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ABSTRACT 
 

Cook, Douglas Dwight, M.S.M.E., Purdue University, December 2005.  Computational 
Models of Fluid Flow, Fluid Structure-Interactions and Structural Vibration of Human 
Phonation.  Major Professor, Dr. Luc Mongeau, School of Mechanical Engineering. 
 

 The purpose of this study was to characterize mechanisms which contribute to 

human phonation through the use of structural, fluid, and fluid-structure interaction 

numerical models.   The flow of air through an orifice representative of the glottis was 

simulated using a finite element Navier-Stokes solver.  The motion of the orifice was 

imposed through moving boundary conditions.  Simulation results were found to be in 

good qualitative agreement with experimental data from a parallel study.  Discrepancies 

in velocity amplitude were due to the incomplete matching of boundary conditions 

between the model and the experiment.  A lumped single degree-of-freedom model of the 

vocal folds was coupled to a viscous, two-dimensional Navier-Stokes computational fluid 

domain in order to investigate viscous flow effects on reduced order models.  The model 

geometry was representative of the vocal fold orifice profile with included angles ranging 

from -10° to 20° in 5° increments and pressure differentials ranging from 100 to 3000 Pa.  

An energy transfer analysis of the coupled system was performed.  Self-oscillation of this 

model was not observed for any configuration.  These results suggest that the presence of 

viscous effects, flow separation, and other flow effects are not sufficient to induce self-

oscillation of a single mass model with a fixed orifice profile.  This supports the 

hypothesis that structural vibrations involving a change in orifice shape are essential to 

self-oscillation.  Modal analysis was used to examine the structural characteristics of a 

continuum vocal fold structure.  The Ritz and finite element methods were used.  A 

geometric sensitivity study was performed in which the major dimensions of the vocal 

fold model were independently varied.  The vibratory properties of the model were 

determined to be most sensitive to changes in the length of the model.  Further results 

 



 xiv

 

indicated that the continuum model is an inherently three-dimensional structure.  The 

vibratory characteristics of this model were significantly influenced by out of plane shear 

and normal stresses which are ignored by two-dimensional planar strain models.  The 

human vocal folds may be similarly influenced these stresses.   
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1. INTRODUCTION AND BACKGROUND 

 

 

This chapter provides an introduction to the location, function, and structure of 

the human larynx.  A description of the mechanics of phonation is given.  The motivation 

and objectives of this study are stated. 

 

 

1.1  Basic Medical Terminology and Conventions 

 A coordinate system relative to the human body is used in this study.  The 

coordinate directions x,y, and z, are shown in Figure 1.1.  The positive y-direction is 

referred to as “anterior” by medical experts.  The opposite direction is referred to as 

“posterior”.  Likewise, the positive and negative z-directions are referred to as “superior” 

and “inferior”.  Due to symmetry of the human body about the mid-sagittal plane, the 

positive and negative x-directions are not distinguished explicitly.  Instead, “lateral” 

always indicates distance from the mid-sagittal plane, regardless of the positive or 

negative x-direction as shown in Figure 1.1. 
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     Lateral, x 
 

Medial

  Lateral 

Superior, z 

 Posterior 

 Transverse Plane 

Anterior, y 

Inferior Coronal Plane 
 Sagittal Plane 

 
Figure 1.1: Coordinate system and medical terminology (adapted from NASA Man-

Systems Integration Standards, 1995).                                
 

 

1.2  The Human Larynx 

The human larynx is located in the upper region of the airway between the trachea 

and the pharynx.  It extends from the base of the tongue to the trachea, and can often be 

seen as a projection of the neck, sometimes referred to as the “Adam’s apple”.  The 

larynx is composed of cartelagenous structures, muscles, ligaments and soft tissue layers.  

The location of the larynx is shown in Figures 1.2 and 1.3. 
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Figure 1.2:  Location of the larynx relative to exterior human features (adapted from 

Larsen, 2002). 
 

 

Oral Cavity Nasal Cavity

Pharynx 

Vocal Folds 

Esophagus 

Larynx 
Trachea 

Figure 1.3: Mid-sagittal view of the human larynx and surrounding anatomical features 
(adapted from Larsen, 2002). 

 

During ingestion, liquids or solids pass through the mouth, pharynx and 

esophagus into the digestive tract.  Inhalation is the passage of air through the nasal 

and/or oral cavities, pharynx, larynx, and trachea to the lungs.  Because of its location, 

the larynx plays a key role in several important biological functions such as inhalation, 

ingestion, coughing, vomiting and phonation.  This study is focused on phonation, which 

is the use of the larynx to generate voiced sounds.   
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1.3  Phonation 

Within the larynx are two tissue formations called the vocal folds (also commonly 

referred to as vocal chords).  A coronal cross-section of the larynx is shown in Figure 1.4 

in which the vocal folds can be seen as protrusions within the larynx.   

 

 

Epiglottis 

Thyroid Cartilage 
  

Thyroarytenoid Muscle 

Vocal Fold 
 

 

Cricoid Cartilage 

Trachea 

Figure 1.4: Coronal section of the larynx (adapted from Gray, 1918). 

 

The vocal folds are the primary organs of phonation.  Each vocal fold is 

composed of four tissue structures: the epithelium, a thin membrane, the lamina propria, a 

soft layer composed of collagen and elastin, the vocal ligament, and the thyroarytenoid 

muscle. 

 The epithelium and lamina propria together form what is commonly referred to as 

the “cover” as these two layers form a limp covering for the much stiffer “body” which is 

composed of the thyroarytenoid muscle and vocal ligament.  These four tissue structures 

are illustrated and identified in Figure 1.5. 
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Vocal Ligament 

                                                    

  

Thyroarytenoid Muscle 
 

Lamina Propria 

 

Epithelium 

Figure 1.5:  The layers of the vocal fold, coronal cross-section diagram                         
(adapted from Hirano and Sato, 1993). 

 

Normal human development results in two vocal folds located on opposite sides 

of the larynx as shown in Figure 1.4.  The vocal folds are generally very similar to each 

other in size and geometry, resulting in a nearly symmetric airway.  The space between 

the two vocal folds is referred to as the glottis.  

 At rest and during inhalation the vocal folds are opened to allow air flow to the 

lungs.  Prior to phonation, the vocal folds are brought together as muscles connected to 

cartilagenous levers contract.   This process is known as adduction.  The reverse process 

(the opening of the glottis) is known as abduction.  The configuration of the vocal folds 

during abduction and adduction are shown in Figure 1.6. 

 

 
 a)                                                     (b) 

Figure 1.6:  View of the vocal folds as seen from the pharynx (adapted from Larsen, 
2002):   (a) abduction  of the vocal folds;  (b) adduction of the vocal folds. 
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            Following adduction, positive lung pressure and abdominal muscles are used to 

produce a net pressure difference between the subglottal and supraglottal regions.  When 

this pressure is sufficiently large to cause deflection of the vocal folds, air is allowed to 

pass through the larynx.  Instability between the aerodynamic and structural forces then 

induces vocal fold motion.  Steady vibration occurs as the system enters into a stable 

limit cycle.  Under these conditions, sustained oscillations of the vocal folds, collisions 

between the folds, turbulence and compressible flow effects produce a complex acoustic 

signal.  This signal is modified by the vocal tract to become the human voice.  The 

fundamental frequency of normal phonation is usually 90 - 130 Hz for the adult male, 

200-250 Hz for the adult female. 

 Common voice disorders involve paralysis of one or both vocal folds, the 

presence of polyps, nodules or other benign growths, scarring, misuse or abuse of the 

vocal folds, or trauma caused by surgery or accidental injury. These pathological 

conditions result in poor voice quality or the inability to phonate.  The most common are 

benign growths.  However, the surgical removal of such growths can produce additional 

obstacles to proper phonation. 

 It is estimated that 28 million US workers are  adversely affected by some kind of 

voice disorder (Verdolini and Ramig, 2001).  The percentage is much higher among those 

who rely heavily upon their voice such as teachers, performers, and public speakers.  

Smith, et al. (1997) found that as many as 20% of elementary school teachers had at one 

time missed school due to a voice disorder.  Research also suggests that students learn 

less effectively when taught by an individual suffering from a voice disorder.   

 

 

1.4  Research Objectives 

The purpose of this study was to identify and quantify mechanisms which 

contribute to self-oscillation of the human vocal folds.  Phonation involves fluid flow, 

structural vibrations, and fluid-structure interactions.  Each of these aspects was 

addressed within this study. 
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The first objective was to determine the ability of a computational fluid model to 

accurately predict dynamic fluid flow representative of human phonation.  A 

commercially available finite element program was used to create a representation of 

flow through an orifice similar in geometry to the glottis.  The motion of the orifice was 

imposed upon the fluid.  This fluid flow behavior predicted by this model was compared 

to the fluid flow through a synthetic vocal fold model of similar geometry.  Comparisons 

were made between predicted and measured fluid flow fields in order to verify the 

accuracy of the computational fluid model. 

The second objective was to investigate the influence of viscous Navier-Stokes 

flow on self-oscillation of a lumped mass model.  The computational fluid model 

mentioned above was coupled to a spring-mass-damper structural model of the vocal 

folds.  The profile of the rigid mass was representative of the human vocal folds.  In order 

to eliminate other factors which might contribute to self-oscillation, the flow was 

assumed to be incompressible and no collisions were allowed.  Thus, the spring-mass-

damper system was affected only by Navier-Stokes viscous incompressible flow.  The 

ability of this system to exhibit self-oscillation was analyzed. 

The final objective was to investigate the structural characteristics of the vocal 

fold structure.  Modal analysis was used to perform a geometric sensitivity analysis of an 

idealized transversely isotropic continuum model of the vocal folds.  The length, width, 

and thickness of the model were varied independently to determine the structure’s 

sensitivity to these parameters.  Modal analysis was used as a descriptive tool to better 

understand the structural characteristics of the model. 

The remainder of the thesis is organized as follows.  Chapter Two provides a 

review of the scientific literature on the subjects and topics investigated.  Chapter Three 

presents the research methods which were utilized.  Chapter Four presents fluid flow 

simulation results.  The dynamic behavior of a single degree-of-freedom model of the 

human vocal folds is analyzed in Chapter Five.  Chapter Six presents the results of a 

modal analysis study in which the vocal fold structure is observed to be inherently three-

dimensional.  Finally, the work is summarized, conclusions are stated and suggestions for 

future research are made in Chapter Seven.  
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2.  LITERATURE REVIEW 

 

 

 The complexity and inaccessibility of the human larynx poses many obstacles to 

detailed studies of human phonation.  Nevertheless, the basic understanding of human 

phonation has progressed in recent years through the use of continuously improving 

experimental and analytical research techniques.  Experiments have been performed in 

vivo on human and canine subjects, post mortem on canine subjects, and in vitro using 

synthetic physical models.  Mathematical models and analytical techniques have also 

been employed to investigate the behavior of the human vocal folds.  This chapter 

presents an overview of previous experimental and analytical studies. 

 

 

2.1  Experimental Studies  

 

 

2.1.1. Geometric Information 

One important requirement for phonation research is a clear understanding of the 

geometry of the human larynx.  Various methods have been employed to obtain this 

information.  These have included dissection, imaging by computed tomography (CT), 

magnetic resonance imaging (MRI), molding techniques, and plastination. 

Scherer et al. (2001b) have used CT images of the vocal folds taken at different 

coronal planes to define a composite vocal fold geometry which was described using 

mathematical functions.  This idealized geometry has been designated M5, and is referred 

to as such in this document.  Recent studies utilizing MRI images (Selbie et al., 2002) 
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have supplied very detailed geometrical descriptions of the larynx cartilages.  Quick-

frozen canine larynges were used by Tayama et al. (2002) to obtain accurate values for 

vocal fold length and thickness.  A wax molding technique was developed by Berry et al. 

(2001) in which polynomial approximations of the vocal fold geometry were produced.    

A quick-setting dental plaster was used by Sidlof et al. (2004) to obtain detailed casts of 

excised larynges. A mold was created following the casting procedure.  A digital three-

dimensional representation of the resulting model was obtained using a bridge-type 

coordinate measuring machine to produce highly detailed geometrical data.   

 

 

2.1.2. Vocal Fold Tissue Properties 

Many studies have been performed to measure and describe the mechanical 

properties of the human vocal folds.  Such properties are difficult to determine due to 

variability among individuals, variation of tissue properties over time, and the difficulty 

of obtaining tissue samples via consistent harvesting procedures.   

Although the properties of vocal fold tissue are anisotropic, most studies have 

focused only on measurements of the tissue properties in the anterior-posterior direction.  

Very little information is available for the transverse (medial-lateral) properties of vocal 

fold tissue.   Min et al. (1995) measured axial stress-strain relations for human ligament 

samples.  Stress-strain relations in the direction of muscle fibers were measured by 

Alipour-Haghighi and Titze (1991) using canine thyroarytenoid muscle samples.  In both 

studies, strain increased non-linearly as a function of strain.  Chan and Titze (1999) 

utilized a parallel-plate rotational rheometer to measure the shear deformation and 

structural damping characteristics of human vocal fold mucosa samples.  Zhang et al. (in 

press) have investigated the stress-strain relationship of the mucosal layer, which also 

exhibited similar non-linear characteristics.  In these studies, a large variation in tissue 

properties was observed between samples.  This variation was observed to be as large as 

one order of magnitude (Chan and Titze, 1991).  A parametric variation of the tissue 

properties over a wide range was proposed by Berry and Titze (1996) as an alternative to 

the use of averaged values.   
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2.1.3. Observations of Self-Oscillating Larynges 

Valuable information may be gained by direct observation of vocal fold vibration.  

Baer (1975), Jiang and Titze (1993) and Berry et al. (2001) have conducted experiments 

which utilized excised canine larynges.  In all cases, a flow supply was used to induce 

oscillation of the canine vocal folds.  The resulting vibration was studied using various 

techniques.  Baer (1975) tracked three vocal fold flesh points using stroboscopy to obtain 

eliptical trajectories of motion.  Jiang and Titze (1993) increased the number of flesh 

points to nine and utilized a hemi-larynx configuration to view the medial surface 

vibration of the vocal folds.    Empirical eigenfunctions were obtained by tracking the 

motion of micro sutures located on the surface of the vocal folds (Berry et al., 2001).  

This study noted that the superposition of the two primary eigenfunctions accounted for 

98% of the vocal folds’ total vibrational energy. 

Techniques have also been developed for the observation of human vocal folds in 

vivo.  These include high-speed imaging, stroboscopy, and kymography.  These methods 

utilize a laryngoscope to provide optical access to the larynx.  The laryngoscope, along 

with stroboscopy, are used extensively by speech therapists and physicians for the 

examination, diagnosis, and treatment of patients (Hirano and Bless, 1993).  

Kymography has been developed by Svec and Schutte (1996) as an alternative to 

stroboscopy.  This method has the advantage of providing a time/displacement 

representation of vocal fold vibration as opposed to the discrete aliased images obtained 

via stroboscopy.  Irregularities in motion which are not apparent in stroboscopy may be 

captured by kymography (Neubauer, 2001).   

Svec et al. (2000) used kymography to obtain the first in vivo measurements of 

the resonance properties of the human vocal folds.  The vocal folds were excited using a 

small shaker placed externally against the larynx.  A frequency sweep was initiated while 

the motion of the vocal folds was captured via kymography.  The vibration amplitude of 

the vocal folds was then plotted as a function of the excitation frequency.  Distinct 

resonance frequencies were observed at 114, 171 and 241 Hz. 
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2.1.4. Experiments Involving Synthetic Physical Models 

There are many difficulties associated with the use of excised larynges, including 

rapid deterioration of the excised specimen, and inconsistent harvesting and storage 

techniques.  Synthetic physical models have been developed as an alternative to excised 

larynges.  While synthetic models do not accurately reproduce the properties of the actual 

vocal folds, their use allows more precise control of experimental conditions.  Accurate, 

repeatable measurements may be made using synthetic models.  Thus, synthetic models 

may be used to investigate the basic mechanisms which cause self-oscillation. 

 Scherer et al. (2001b, 2002) studied the intraglottal pressure distributions of 

symmetric and asymmetric geometric profiles using rigid models of the vocal folds in a 

wind tunnel.  Results suggested that an oblique glottis configuration could lead to 

desynchronization of vocal fold oscillation.  Scherer (in press) has also investigated the 

influence of inferior and superior vocal fold surface angles on the pressure profile within 

the glottis.  Results indicated that for typical angles the pressure distribution within the 

glottis is relatively independent of inferior and superior surface angle.   

 One common assumption used in creating rigid models of human phonation is 

that the flow through a static rigid model is identical to the instantaneous flow through a 

geometrically similar dynamic model.  This is referred to as the quasi-steady 

approximation.  Zhang et al. (2002) evaluated the quasi-steady approximation for the 

sound generation of pulsating jets within a tube.  A glottis-shaped nozzle was subjected 

to  pulsatile flow in which the Reynolds numbers and oscillation frequencies were 

representative of human phonation.  The quasi-steady approximation was found to be 

valid for frequencies ranging from 70 – 120 Hz.   

Thomson (2004) created a self-oscillating synthetic model using a soft silicone 

rubber compound which was observed to oscillate at a frequency of 120 Hz for a trans-

glottal pressure of 1.2 kPa.  Similar models created by Mantha et al. (in prep.) have 

exhibited onset pressures as low as 0.7 kPa for similar oscillation frequencies.  Human 

phonation is normally initiated at a trans-glottal pressure of approximately 0.5 kPa. 

Park et al. (in review) used synthetic driven models similar to those of Zhang et 

al. (2002), which were based on the M5 geometry and subjected to forced oscillations at 
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a frequency of 100 Hz.  The role of displacement flow on vortex formation was 

investigated.  A more accurate procedure was developed for verifying the accuracy of the 

quasi-steady approximation.  The influence of a comissure on the sound generation was 

also investigated (Park et al., in review). 

 

 

2.2  Mathematical Models and Theoretical Analysis of Phonation 

Many mathematical models have been created to describe human phonation. 

Though all models are idealized representations, well constructed models may be used to 

provide additional insight into the physical phenomena involved in human phonation.  

Hypotheses generated by the observation of model behavior require experimental 

verification. 

 

 

2.2.1. Model Classification 

Structural models of the human vocal folds may be classified in terms of  

dimensionality.  Models may be two-dimensional, three-dimensional, or hybrid.  

Phonation models may also be further categorized as reduced order or high order models. 

Reduced order models often consist of lumped spring-mass-damper systems designed to 

simulate the primary characteristics of the vocal folds with a minimum number of model 

parameters. Reduced order model simulations are computationally inexpensive, thus 

making them potentially useful to voice therapists and physicians.  Higher order models 

may include thousands or millions of degrees of freedom (e.g. finite element and 

continuum models), but are computationally expensive.  Higher order models may be 

used to examine the fundamental mechanisms of phonation which may not be modeled 

by reduced order models.  Insight gained through the use of higher order models may be 

used to improve the accuracy of reduced order models. 
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2.2.2. Reduced Order Models 

The first self-oscillating model of human phonation was created by Flanagan and 

Landgraf (1968).  This model consisted of a single spring-mass-damper system subjected 

to an aerodynamic excitation described by Bernoulli’s equation, and included acoustic 

loading.  Lucero (2004) showed through mathematical analysis that a linear single mass 

model subjected to ideal fluid flow is not capable of self-oscillation.  However, the 

addition of acoustic loading to such models has been shown to result in self-oscillation 

(Titze, 1988; Trevisan et al., 2001). 

The two-mass model of Ishizaka and Flanagan (1972) is one of the most cited 

studies in the field.  In this study, fluid-induced oscillations of a lumped-element system 

consisting of two coupled masses, two viscous dampers, and three springs were 

investigated.  Fluid flow was modeled using Bernoulli’s Equation.  Since the two-mass 

model was introduced, it has been widely utilized.  Subsequent studies have analyzed 

more complex models having additional masses in both the inferior/superior direction as 

well as in the anterior/posterior direction (Kob, 2002).  Recent reduced order models 

include a single rigid mass supported by two springs or an elastic base (Horçek and Sveç, 

2002a), and a two-mass model in which both masses move in the medial/lateral direction, 

one of which has a rotational degree of freedom (Titze, 2002).  Other studies include 

more sophisticated fluid models such Titze (1988) and Lamar et al. (2002).  Analysis of 

these models has ranged from simple observations of the model’s behavior to stability 

and bifurcation analysis (Horacek and Svec, 2002b; Lucero 1999).   

 

 

2.2.3. Higher Order Models 

Hunter et al. (2004) investigated the posturing which occurs prior to phonation 

using a finite element model of the cartilages and muscles involved in phonation.  A 

finite element model was utilized by de Vries et al. (1999) to obtain more accurate values 

for the parameters of a reduced order model of the vocal folds.  The stresses involved in 

the motion and collision of the vocal folds were examined by Gunter (2003) using a fully 

three-dimensional finite element model.  The accuracy of these models is limited by a 
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lack of tissue properties information.  Parametric studies have been utilized to circumvent 

this limitation (Berry and Titze, 1996). 

High order models have also been used to study the vibratory characteristics of 

the vocal folds.  Modal analysis is the most common procedure used.  Modal analysis 

provides the mode shapes and associated resonance frequency for each normal mode of 

vibration.  Normal modes are the simplest building blocks of the complex vibration 

response of a linear system.  The response of a linear system to an arbitrary forcing 

function may be viewed as consisting of a superposition of the systems’ normal modes.  

Modal analysis of a solid “in vacuo” does not directly address the fluid-structure 

interactions which occur during phonation.  However, knowledge of the vocal folds’ 

modal properties can be used to better understand the behavior of the vocal folds when 

subjected to aerodynamic forces (Berry, 2001).   

 Berry and Titze (1996) reintroduced and expanded upon a continuum model of 

the vocal folds first proposed by Titze and Strong (1975).  The vocal folds were idealized 

as a uniform rectangular parallelepiped fixed on three faces.  The remaining three faces 

were free to vibrate, as shown in Figure 2.1. The updated study utilized more accurate 

boundary conditions and reported new observations on the modal characteristics of the 

continuum structure.  Modal analysis was performed assuming a transversely orthotropic 

material.  For a nearly incompressible material formulation, it was found that the second 

and third modes of vibration occurred at nearly the same frequency across a wide range 

of tissue properties.  Superposition of these two modes was reported to result in a 

converging/diverging orifice geometry.  It was conjectured that these two modes might 

both respond when the model was subjected to aerodynamic loading.  The authors 

interpreted this result as supporting the converging/diverging orifice configuration theory 

of Titze (1988). 
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Figure 2.1:  Schematic diagram of the continuum model (adapted from Berry and Titze, 
1996).  Shaded faces indicate fixed boundary conditions. 

 

 

2.3  Motivation of the Present Study 

Thomson (2004) verified the accuracy of a finite element fluid model for steady 

flow through an M5 glottis profile.  However, a dynamic verification was not performed.  

The first objective of the present study was to determine the accuracy with which the 

same finite element numerical model is capable of predicting dynamic fluid flow 

representative of human phonation.  A proper verification will support the use of this 

technique for future simulations of fluid flow through the human glottis. 

de Vries et al. 2002 compared the different behavior of the two-mass model when 

subjected to viscous or ideal fluid flow.  This study found that viscous, incompressible 

flow as modeled by the Navier-Stokes equations produced more realistic results than are 

obtained by the use of Bernoulli’s equation.  In the present work, a similar approach was 

used in which a viscous, incompressible fluid governed by the Navier-Stokes equations 

was coupled with a single spring-mass-damper system.  Recall that a single-mass model 

may be induced to oscillate by the presence of acoustic loading (Flanagan and Landgraff, 

1968), but that a single-mass model will not self oscillate when subjected only to ideal 

fluid flow (Lucero, 2004).  The purpose of this work was to determine the effects of a 
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more accurate fluid model on the stability of a simple model of the vocal folds.  Such an 

investigation will provide more information concerning the role of viscous forces and 

flow structures on self-oscillation. 

The literature on vocal fold modeling suggests that structural complexity is a key 

factor influencing self-oscillation.  For example, the simple two-mass model will self 

oscillate when subjected to ideal flow (Ishizaka and Flanagan, 1972) whereas the one-

mass model will not (Lucero, 2004). A clear understanding of the structural 

characteristics of the vocal folds will allow for the creation of more accurate phonation 

models.   Furthermore, the validity and range of applicability of existing reduced order 

models depends upon the degree to which these models are able to accurately simulate 

the attributes of the human vocal folds.  The continuum model of Berry and Titze (1996) 

was used to determine the model’s sensitivity to its key dimensions (length, depth, and 

thickness) and to obtain descriptive information concerning the complex vibratory 

behavior of the continuum vocal fold model.   
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3.  METHODS 

 

 

 In this chapter, the methods utilized in the present work are described.  These 

include methods used for simulating the dynamic flow of air through a time varying 

orifice representative of the human glottis, numerical methods used to compute the fluid-

structure interactions of a single degree-of-freedom model of the vocal folds, and 

methods used for obtaining vibratory normal modes of a continuum vocal fold model. 

 

 

3.1 Numerical Methods Overview 

 The commercially available finite element package ADINA (an acronym for 

Automatic Dynamic Incremental Nonlinear Analysis) was used for all fluid flow 

simulations and fluid-structure interaction simulations in this study.  This software was 

specifically designed to perform finite element analyses of structures, fluids, and fluid-

structure interactions.  Structural members may be modeled as linear or nonlinear, 

including material nonlinearities, large deformations and contact conditions. Static 

analysis, modal analysis, or transient analysis using explicit or implicit time integration 

can be performed.    

Fluids can be modeled as laminar or turbulent, acoustic, incompressible or 

compressible fluids governed by the appropriate versions of the Navier-Stokes equations.  

All fluid simulations in the present study were performed assuming viscous 

incompressible fluid flow.  The conservation of mass relation and Navier-Stokes 

equations for viscous incompressible flow are: 

0∇⋅ =u                  (3.1) 
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2D P
Dt

ρ μ= −∇ + ∇
u u .                   (3.2)   

In these equations, u is the vector of fluid velocities, ρ is the fluid density, P is the 

fluid pressure and μ is the fluid viscosity.  

The fluid and structure may be either directly or iteratively coupled.  In direct 

coupling, the fluid and structure matrices are combined and the resulting system solved as 

a whole at each time step.  In the iterative method, the fluid and structure are solved 

separately.  During each time step, the fluid and structure are iteratively solved until the 

fluid-structure interaction boundary conditions (summation of forces and continuity 

relations) are satisfied.  The solver then marches on to the next time step.  For simple 

systems, the direct method is faster.  However, as the fluid and structure matrices become 

large, the combination of these two domains into a single matrix equation results in an 

oversized matrix.  Because the solution time increases drastically with matrix size, the 

iterative method is generally faster for large, complex fluid-structure systems.  Detailed 

information concerning the numerical formulations of ADINA as well as general finite 

element formulations may be found in Bathe (1996) and Cook et al. (2001). 

 

     

3.2  Verification of Numerical Accuracy for Dynamic Fluid Flow Simulations 

A numerical model was designed to determine the accuracy of the finite element 

fluid model introduced in Section 3.1.  The experimental configuration of Park et al. (in 

review) was used to provide experimental data for direct comparison.  Park et al. utilized 

a synthetic silicone model of the human vocal folds which was subjected to forced 

oscillations.  The fluid flow through the synthetic model was measured using hot wire 

anemometry, pressure sensors, and flow meters.  The fluid flow was assumed to be 

representative of human phonation.  The numerical model was designed to match the 

experimental configuration of Park et al. (in review) as closely as possible.  The modeling 

approximations which were applied to the numerical model are discussed in the following 

sections. 
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3.2.1.   Two-Dimensional Analysis Assumption 

The physical model of Park et al. was a three-dimensional structure representative 

of the human vocal folds.  The model possessed two symmetry planes, one passing 

through the center of both moving “folds” (a coronal plane) and another passing along the 

line formed by the folds when completely closed (the mid-sagittal plane).  The coronal 

plane was chosen for two-dimensional fluid flow analysis.  This approximation 

significantly reduces computational expense.  It also introduces discrapancy between the 

experiment and the numerical calculations by precluding the simulation of asymmetric 

flow behavior.    A photo of the synthetic vocal fold model is shown in Figure 3.1. 

                   

Glottis 

LG

HG

Coronal plane (dashed) 

Vocal folds 
Mid-sagittal plane 
(dashed) 

Figure 3.1:  The synthetic vocal fold model as viewed from a point downstream from the 
orifice. 

 

A two-dimensional representation effectively models the vocal folds as infinitely 

long structures.  The orifice aspect ratio, AR, may be defined as the ratio of the orifice 

length, LO , to the orifice height, HO: 

O

O

LAR
H

= .                                                           (3.3) 

An infinitely long structure would have an infinite aspect ratio. The orifice aspect 

ratio ranges from a minimum value of approximately 17 at maximum opening to a very 

large value just before closure.  Examination of the flow field velocity (Park et al., in 

review) indicated that the fluid velocity at the orifice center is nearly constant in the 

lengthwise direction.  The previous two observations provide adequate justification for 
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making the two-dimensional simplification.  It should be noted that the flow field 

solution obtained in this manner is restricted to the symmetry plane only.  Since the 

purpose of this analysis was only to verify the accuracy of the flow model, this limitation 

was deemed acceptable.   

 Symmetry of the flow field was assumed in order to reduce the size of the fluid 

domain, thereby reducing computational effort.  Only the lower half of the coronal 

symmetry plane was modeled and analyzed.  A simplified diagram of the coronal 

symmetry plane is shown in Figure 3.2. 

 
 Gap closes symmetrically once per cycle 

Fluid   

Line of symmetry 

z (superior) direction 

x (lateral) direction 

 

HG

Figure 3.2:  Schematic representation of the coronal symmetry plane. 
         

 

3.2.2.   The Assumption of Negligible Structural Deformation 

 In the experimental setup of Park et al. (in review) the motion of the vocal fold 

model was imposed by actuators operating at a constant frequency of 100 Hz.  Because 

the actuator forces were estimated to be several orders of magnitude greater than 

aerodynamic forces, the influence of aerodynamic forces on structural displacements 

were neglected.  This assumption reduces the complexity of the system from a fully 

coupled fluid-structure interaction problem to that of a fluid constrained to move through 

an orifice of varying size.  The motion of the wall was enforced upon the computational 

fluid domain without considering the fluid’s effect upon wall motion.   
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 Upon inspection of the silicone compound used to create the physical model, it 

was assumed that small deformations of the vocal fold walls would have very little effect 

on fluid flow compared to the large-amplitude motion of the model’s orifice.  Also, 

because the purpose of these simulations was to obtain detailed flow field information, 

the stresses in the physical model were of little consequence.  Thus, the structural 

response was not considered.  The fluid analysis was performed using the finite element 

program described in Section 3.1.  The orifice motion was prescribed by applying a 

“moving wall” boundary condition.   

 

 

3.2.3.   Fluid Assumptions 

The flow was considered to be incompressible.  The fluid properties reflected the 

conditions matched those measured in the laboratory on the day of the experiment.  

Temperature and pressure were measured directly using a thermometer and barometer, 

respectively.  Viscosity was obtained from tabulated data for air viscosity as a function of 

temperature (Fox and MacDonald, 2003).  Density was calculated according to the Ideal 

Gas Law: 

mRTPV =                                            (3.4) 

where P is pressure (Pa), V is volume (m3), m is mass (kg), R is the gas constant for air, 

and T is the temperature (K).  Density may be expressed in terms of the two measured 

quantities, temperature and pressure: 

.
RT
P

=ρ                                                             (3.5)                         

Under adiabatic assumptions the bulk modulus may be calculated as follows:  

PK γ= .                                                            (3.6) 

where γ is the ratio of the constant-pressure specific heat to the constant-volume specific 

heat.  Table 3.1 lists the fluid properties which were used.   
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Table 3.1: Fluid properties used in numerical simulations. 
Property          Value

Temperature 78° F  / 25. 6° C 
Pressure 748 mmHg  /  99.7 kPa 
Viscosity 1.864E-5 kg/(m·s) 
Density 1.16 kg/m3

Bulk Modulus 139.6 kPa 
Ratio of specific heats, γ 1.4 

 

 

3.2.4.   Geometry and Boundary Conditions 

An 8 cm x 1.75 cm channel was considered with a trapezoidal protrusion located 

2.5 cm downstream from the inlet. The protrusion geometry was based on the dimensions 

of the synthetic model.   Figure 3.3 shows the geometry, boundary conditions, and 

computational grid of the fluid domain. 

 

 
Sponge layer   

 

Symmetry boundary 

Figure 3.3:  Geometry, boundary conditions, and computational mesh of the             
numerical model. 

 

To match the experimental configuration, a uniform zero pressure boundary was 

imposed 5 cm downstream from the orifice along the right vertical boundary as well as 

along the lower boundary downstream of the orifice.   

Zero 
pressure 

boundary 

Zero pressure boundary 

Non-zero 
pressure 
boundary 

Rigid boundary 

Moving 
wall 

boundaries 

Acoustic measurements were not recorded during the experiment.  Static pressure 

measurements at a location 2.5 cm upstream from the orifice indicated that a 1.05 kPa 
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pressure drop occurred between this point and the atmospheric conditions downstream 

from the orifice.   In the numerical model, a uniform 1.05 kPa constant pressure surface 

was applied 2.5 cm upstream from the orifice at the left vertical boundary.  The absence 

of fluctuating pressure boundary conditions may have introduced discrepancies between 

the simulation and experiment.  

   A layer of more viscous fluid was used to reduce the effect of non-physical 

pressure reflections which may occur when a vortex encounters a zero pressure boundary.  

This so-called “sponge layer” consisted of a fluid identical to that described above except 

that the viscosity of the sponge layer fluid was ten times greater than that of air.  This 

layer served to dissipate any vortices before they encountered the zero pressure boundary.     

The top edge (which is the line of symmetry and the center line of the channel), 

was defined as a symmetric boundary condition: the flow along this line was tangential to 

the boundary.  The lower boundary upstream of the orifice was defined as a solid wall 

with friction (“no slip” boundary condition).   

 

 

3.2.5. Structural Motion 

High speed images taken during the experiment were used to determine the 

motion of the model at the coronal plane.  The orifice height was obtained by measuring 

the number of pixels separating the two halves of the model at each time increment.  The 

known length of the orifice (17 mm) provided a reference for conversion between pixels 

and millimeters.  The resulting data was used to specify the motion of the protrusion in 

the numerical simulation.  This orifice height time history is shown in Figure 3.4. 
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Figure 3.4:  Orifice height time history.  

 

 

3.2.6.   Gap Condition 

A “gap condition” was used to interrupt the fluid flow through the orifice while 

preventing collision between the upper wall and the protrusion.  Because triangular fluid 

elements were used, a collision of this type would have resulted in elements of zero 

volume, thus leading to a numerical singularity.  The gap condition prevents fluid from 

passing through the orifice when the gap between the upper and lower walls reaches a 

specified value.  A gap size, G = 0.011 mm was adopted during closure.  A slightly 

greater gap, G = 0.012 mm was used during opening.  The discrepancy between opening 

and closing gap size values was to avoid numerical instability (ADINA Theory and 

Modeling Guide Volume III, 2004).  Note that the gap size G, is a parameter of the 

numerical model.  Because the numerical model utilizes symmetry, the orifice height, HO,  

is related to the gap size by the following relation: 

 

2
OHG = .       (3.7) 
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3.2.7.   The Finite Element Mesh 

 The fluid domain was meshed with three-node triangular elements designed for 

incompressible flows.  The grid consisted of 28 000 elements.  A sketch of the grid is 

shown in Figure 3.3.  High mesh density was utilized in regions of high pressure or 

velocity gradients.  A somewhat coarser grid was used in areas of low gradients.  Care 

was taken to ensure a smooth transition between areas of high and low mesh density.  

Mesh refinement was performed in order to determine that the mesh represented a 

converged solution.  

 The orifice region experiences extreme mesh distortion as the orifice gap varies 

from G = 0.01 mm to G = 0.465 mm.  In order to minimize element distortion due to 

extension and contraction, the model was constructed such that during each complete 

oscillation, each element was extended and compressed by the same factor.  This may be 

expressed using the following equations: 

0
min

G G
MF

=  ,                                                           (3.8) 

0 ,G MF Gmax⋅ =                                                         (3.9) 

where G0 is the initial distance between the upper and orifice walls, Gmin is the minimum 

gap distance (0.01 mm), Gmax is the maximum gap distance (0.465 mm), and MF is the 

magnification factor.  The two unknowns, MF and G0 were found to be 6.82 and 0.068 

mm, respectively.  The use of these values minimized distortion of the computational 

grid. 

Simulation results for fluid flow simulations through a synthetic model of the 

human glottis are presented and discussed in Chapter 4. 

 

 

3.3  Single Degree-of-Freedom Models of the Vocal Folds 

As was noted by Lucero (2004), a single-mass model coupled with Bernoulli flow 

is not capable of simulating sustained oscillation.  In order to investigate the effects of 

viscous flow on an idealized lumped mass model, a rigid mass-spring-damper system was 

coupled to a viscous fluid domain similar to that of Section 3.2.   The mass, spring and 
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damper values were selected to produce vibration on the order of that observed in human 

phonation.  A schematic representation of this model is shown in Figure 3.5. 

 

 
No slip boundary No slip boundary 

Applied 
pressure 
boundary 

Zero 
pressure 

boundary 
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    m 
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Symmetry boundary 

z  

x

Figure 3.5:  Schematic representation of the one mass model; m = 0.046 kg;                     
k = 5000 N/m; c = 4 kg/s; initial HO = 2 mm.   

  

 

3.3.1.   Modeling Assumptions Applied to the Single Mass Model 

The fluid was modeled as incompressible and viscous.  Flow symmetry was 

assumed.  Static boundary conditions were applied to the computational domain.  The 

structure was modeled as a rigid lumped mass.  Discrete spring and damper elements 

were used as shown in Figure 3.5.  The mass was constrained to move in the x-direction.  

No collisions between the mass and the upper wall were permitted.   

 

 

3.3.2.   Structural Model Assumptions 

The M5 geometry (Scherer et al., 2001), was used to define the glottal profile on a 

scale representative of human phonation.  A very high Young’s Modulus (E = 1013 Pa) 

was assigned to the mass in order to model this region as rigid.  All finite element nodes 

within the mass were constrained to move in the x-direction.  No rotation of the mass was 

allowed. 

Linear spring and damping elements were used to provide stiffness and damping 

characteristics.  Although the mass itself was assigned a density of zero, the spring 
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element was assigned a discrete mass value which was constant and independent of the 

area of the mass region.   

 

 

3.3.3.   Computational Considerations 

In order to avoid the numerical singularities associated with fluid elements of zero 

volume, collisions between the mass and the upper wall of the fluid domain were not 

allowed.  This does not preclude self-oscillation.  The falsetto voice register has been 

observed in which no collisions are present (Svec, 2002).  Thomson (2005) created a self-

oscillating numerical model of phonation in which collisions were absent. 

The structural region was meshed with approximately 300 plane strain quadratic 

elements.  The fluid region was meshed with approximately 18 000 planar fluid elements.  

Exact numbers of elements varied slightly depending on the structural geometry.  The 

fluid and solid meshes are shown in Figure 3.6.  Because the structure in this case is very 

simple (only several hundred elements), the direct solution technique was used for all 

fluid-structure interaction simulations.  Single-mass model simulation results are 

presented and discussed in Chapter 5. 

 

            k                c  

z  

x 

Figure 3.6:  Computational grid for solid and fluid domains with schematic  

representation of spring and damper elements. 
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3.4  Modal Analysis of an Idealized Model of the Vocal Folds 

An idealized continuum model of vocal fold tissue was used to investigate the 

modal properties of the vocal folds.  Computational techniques included both the Ritz and 

finite element methods (ADINA).   

 

 

3.4.1. The Continuum Model 

The continuum model of Berry and Titze (1996) was used to investigate the 

dimensionality of the vocal folds structure.  The continuum model consists of a solid 

rectangular parallelepiped of uniform material properties.  The model is subjected to the 

following boundary conditions:  1) no motion allowed on anterior/posterior and lateral 

faces 2) free motion allowed on the inferior/superior and medial faces.  The model and 

accompanying boundary conditions are shown in Figure 2.1.   

The continuum model shown in Figure 2.1 consisted of a uniform, linearly elastic, 

transversely isotropic rectangular solid.  A transversely isotropic material possesses the 

same material properties in all directions within the transverse plane, and different 

properties in the longitudinal direction, which is perpendicular to the transverse plane.  

The xz plane of Figure 2.1 is the transverse plane and the longitudinal direction is parallel 

to the y-axis.  This type of material was selected in order to approximate the vocal fold 

tissue, which consists of muscle fibers along the anterior/posterior direction. 

The stress-strain relationships of a three-dimensional transversely isotropic 

material may be described using Hooke’s Law, 

 

[ ] [ ] [ ]Cσ ε=  ,                                            (3.10) 

 

where [σ] is the vector of six stress components,  
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 [ε] is the vector of six strain components,   
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and [C] is the matrix of elastic coefficients.  The inverse matrix, [C]-1 has a simpler form 

and is expressed as, 

 

 

 

 

 

 

. (3.13) 

 

1

1 ' 0 0 0
'

' 1 ' 0 0 0
' ' '

' 1 0 0 0
'

[ ]
10 0 0 0 0

'
10 0 0 0 0

'
10 0 0 0 0

trans

trans trans

trans

trans trans

trans

E E E

E E E

E E E
C

νν

ν ν

ν ν

μ

μ

μ

−

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 A uniform transversely isotropic material possesses five independent material 

constants.  These are the Young’s modulus and Poisson’s ratio in the transverse plane 

(Etrans and vtrans), the Young’s modulus, Poisson’s ratio and shear modulus in the 
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longitudinal direction (E’, v’, and μ’).  The shear modulus in the transverse plane (μtrans) 

depends upon Young’s modulus and Poisson’s ratio in the transverse plane through the 

relation 

 

 
2(1 )

trans
trans

trans

Eμ
ν

=
+

.  (3.14) 

   

 In terms of standard material constants, the transverse and longitudinal material 

constants are, 

 

 Etrans = Ex = Ez,         (3.15) 

 Elong = Ey,          (3.16) 

 vtrans = vyz= vxy ,                                                                                               (3.17)   

vlong = vxz ,                                      (3.18) 

μlong = μxy= μyz .                       (3.19) 

 

 The material properties used in this study were the same as those used by Berry 

and Titze (1996), and are listed in Table 3.2. 

 

Table 3.2:  Model dimensions and tissue properties. 
CGM Units    SI Units

1.0 cm 0.01 m
1.2 cm 0.012 m
0.7 cm 0.007 m
1.03 g/cm3 1030 kg/m3

104 Pa

Longitudinal shear modulus, μ trans 104 Pa

0.9999 0.9999
0 0

Lateral depth, D 
Longitudinal (anterior-posterior) length, L

105 dyne/cm2  

Vertical thickness, T

105 dyne/cm2  

Longitudinal Poisson's ratio, ν ’

Tissue density, ρ
Transverse Young's modulus, E trans

Transverse Poisson's ratio, ν trans
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Modal analysis of this structure was performed using two methods: the Ritz 

Method and the finite element method.  Additional assumptions were made as discussed 

below. 

 

 

3.4.2. Modal Analysis 

Modal analysis is a common procedure whereby resonance frequencies of a structure 

are obtained by the solution of an eigenvalue problem of the form: 

 

                            A x = λ B x           (3.20) 

 

Where A is the structure’s stiffness matrix, B is the structure’s mass matrix, x is the 

eigenvector and λ being the corresponding eigenvalue.  There are a variety of methods 

which have been developed for obtaining the matrices A and B.  Some of these include 

the Rayleigh-Ritz Method, weighted residuals methods, and the Galerkin Method 

(Meirovitch, 1997).  Numerous methods also exist for solving the eigenvalue problem 

once the mass and stiffness matrices have been obtained. 

Two assumptions are common to standard modal analysis formulations:  1) linear 

elasticity and 2) the structure exists in vacuo.  Linear superposition allows complex 

vibration responses to be decomposed into a linear superposition of linear normal modes.  

However, linearity also requires that the displacement fields remain within the limits of 

the small amplitude assumption.  Thus, many types of vibration which are inherently 

nonlinear cannot be analyzed using modal analysis. 

Unless fluid contributions are explicitly included in the analysis of a structure, 

modal analysis neglects fluid forces.  This simplification is reasonable for structures 

which are relatively insensitive to the influences of a surrounding fluid.  Thus, 

aerodynamic forces which are present in and vitally important to actual phonation are 

neglected by modal analysis.  However, Berry (2001) has observed that the linear, in 

vacuo normal modes of vibration are qualitatively similar to those obtained empirically 

from in vivo experiments using canine larynges.  
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3.4.3.  Modal Analysis of the Continuum Model via the Ritz Method 

The Ritz method is based upon the principle of minimum potential energy.  

Displacement functions were used to approximate the mode shapes of the structure of 

interest.  Displacement functions must satisfy essential boundary conditions, such as zero 

displacement, while being flexible enough to describe a wide variety of vibratory shapes.  

Polynomials were used as the shape functions in the x- and z-directions while sinusoidal 

functions were used to approximate displacements in the y-direction as in (Berry & Titze, 

1996).  Thus, 

 

 

    (3.21) 
 

 (3.22) 

(3.23) 

where ξ(x,y,z,t), ψ(x,y,z,t), and ζ(x,y,z,t) represent displacement functions in the x-, y-, 

and z-directions, respectively. One important assumption which significantly simplified 

the analysis was that all displacements in the y-direction were neglected (Eqn. 7b).  This 

assumption was originally based upon observations of excised canine larynges which led 

to the conclusion that vocal fold motion was restricted to the coronal plane (Saito et al., 

1985).  A more recent study by Berry et al. (2001), confirmed that the vibration of vocal 

fold along the medial surface was composed primarily of motion in the x-(medial/lateral) 

and z-(inferior/superior) directions.  Vibration amplitude the y-(anterior/posterior) 

direction was observed to be approximately one order of magnitude lower than that found 

in the x-and z-directions.  Thus, constraint of y-direction displacement is consistent with 

recent quantitative measurements and significantly reduced computational time.  The 

consequences of the planar motion assumption are discussed in Section 4.3. 
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The potential energy of the continuum may be expressed as; 

 

   Π= I1-ω2I2      (3.24) 

 

where, 
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(3.26) y dz

 

as given by Washizu (1968).  Here, I1 represents the internal strain energy and I2 

represents the kinetic energy of the structure.  The potential energy is calculated using the 

integral expressions given above, then rendered stationary by differentiation with respect 

to each unknown coefficients Aij and BB

    (3.2

 (3.28) 
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This yields a set of equations which must be simultaneously solved in order to 

obtain the system eigenvalues.   

Equations (3.21) and (3.22) yielded a set of a equations which were quadratic 

with respect to the unknown constants Aij and BBmn.  Differentiation by Aij and Bmn B as 

stated in Equations (3.23) and (3.24) resulted in a set of equations which were linear in 

the coefficient of differentiation.  The coefficients were then ordered according to the 

following scheme, 
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Finally, the individual numerical terms of each equation were isolated by differentiation 

with respect to each unknown coefficient.  The system of equations may then be 

expressed as stiffness (K) and mass (M) matrices: 
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The matrix representation of the K stationary equations may then be expressed as; 

 

 Kx=ω2Mx.  (3.32) 

 

This system of equations was solved via standard eigenvalue techniques to obtain 

eigenvalues and eigenvectors.   

The Ritz method was implemented using MATLAB.  Integration and 

differentiation procedures for the creation of mass and stiffness matrices were carried out 

symbolically in order to reduce numerical errors.  Only the eigenvalue problem was 

solved numerically.  A more thorough description of this method may be found in Berry 

and Titze (1996). 
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3.4.4.  Modal Analysis of the Continuum Model using the Finite Element Method 

The finite element program ADINA (version 8.2) was also used to compute the 

normal modes of the continuum model.  Like the Ritz Method, the finite element modal 

analysis also assumes linearity.  This restricts the solution to small-amplitude oscillations 

about a state of equilibrium.  Unlike the Ritz Method, the finite element method utilizes a 

large number of low-order polynomial-based elements in order to describe the mode 

shapes.  Because of this, the finite element method can more accurately approximate 

complex mode shapes which are difficult to predict a priori. 

The rectangular domain, shown in Figure 3.7, was meshed using 840 quadratic 

(27 node) three-dimensional solid finite elements for a total of 7875 nodal points.  

Repeated calculations using varying mesh densities confirmed that this configuration 

represents a mesh-converged solution.  The model geometry and boundary conditions 

were consistent with Table 3.1.  Modal analysis was performed in ADINA using the 

Lanczos solution method (ADINA Theory and Modeling Guide I, 2004). 

 

x  

z  

y  

Figure 3.7:  Schematic of the computational grid.  Length, L, thickness, T, and depth, D 
shown.  Shaded face indicates fixed boundary condition. 
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Aside from differences associated with approximating mode shapes, the Ritz and 

finite element method are generally considered to be alternate representations of the same 

problem.  Both methods generate mass and stiffness matrices, then solve the linear 

system to obtain eigenvectors (mode shapes) and eigenvalues (modal frequencies).  Thus, 

for the same assumptions, the Ritz and finite element methods should produce identical 

results.  Modal analysis results are presented and discussed in Chapter 6. 
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4.  FLOW SIMULATIONS RESULTS  

 

 Numerical predictions of the flow through a moving wall orifice are presented and 

compared to experimental data.  The velocity profile across the orifice and velocity time 

history at the orifice center were both compared to measured values.  The goal was to 

determine the accuracy of the finite element program introduced in Section 3.1 when 

used to simulate dynamic fluid flow representative of human phonation. 

 

 

4.1  Numerical Convergence 

Velocity values were obtained from both synthetic and numerical models one 

millimeter downstream from the orifice.  Because of the symmetry which was assumed in 

the creation of the numerical model, a symmetric velocity profile was obtained across the 

orifice at each time step. Time history comparisons at a given point (the orifice center) 

and velocity profile comparisons across the orifice at a given instant in time were made. 

 Mesh convergence was evaluated by comparing the velocity profiles at the instant 

of maximum opening for several different mesh densities as shown in Figure 4.1. 

Subsequent results presented herein were obtained using the finest mesh.    

Time step convergence was evaluated by decreasing the time step, Δt, while using 

the finest mesh obtained above.  The velocity time history at the orifice center is 

compared for various time steps in Figure 4.2.  A timestep of Δt = 1x(10-4) seconds was 

used for all results hereafter. 
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Figure 4.1:  Axial velocity magnitude versus medial/lateral distance from orifice 
centerline at maximum orifice opening using numerical meshes of differing 
density;  ― Mesh 1 – 10 000 fluid elements;  – – Mesh 2:  23 000 fluid elements;  
· · · Mesh 3: 28 000 fluid elements. 
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Figure 4.2:  Axial velocity magnitude versus fraction of period, T.                                     

―  Δt = 1x(10-4) s;    – –  Δt = 0.5x(10-4) s               
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4.2 Flow Field Results 

 The velocity profile across the orifice was computed.  Results from this 

simulation were compared to measured values at several discrete moments in time:           

t = T/4, t = T/2, and t = ¾ T, where t is the period of oscillation.  These results are shown 

in Figures 4.3, 4.4 and 4.5. 
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Figure 4.3:  Axial velocity magnitude versus distance from centerline at t = T/4:                                       
  -  Experimental data;       Ñ  -  Numerical predictions 
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Figure 4.4:  Axial velocity magnitude versus distance from centerline at t = T/2:                                           
  -  Experimental data;       Ñ  -  Numerical predictions 
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Figure 4.5:  Axial velocity magnitude versus distance from centerline at t = 3T/4:                                          
  -  Experimental data;       Ñ  -  Numerical predictions 
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 A comparison between measured and predicted centerline flow velocity as a 

function of time is shown in Figure 4.6. 
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Figure 4.6:  Flow velocity magnitude versus fraction of period, T, at orifice center:                                  
  -  Experimental data;       Ñ  -  Numerical predictions 

 
 

 

4.3  Discussion 

 

 

4.3.1.   Qualitative Accuracy of the Driven Model Simulations 

The velocity time history at the orifice center is shown in Figure 4.6.  It may be 

observed that both the rate of velocity increase and the rate of velocity decrease are 

correctly predicted by the numerical model.  After reaching a peak velocity at 

approximately  t = 0.3 T, the measured experimental velocity decreases slightly until        
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t = 0.4 T at which time it rises steadily to another peak value at t = ¾ T.  The numerical 

model does not exhibit the first peak, but does rise steadily until reaching the second peak. 

In the experimental case, the jet begins with a moderate width at t = T/4, increases 

in width at t = T/2, then decreases in width at t = ¾ T.  Meanwhile, the maximum jet 

velocity increases during each of these periods.  Similarly, the simulated jet is of 

moderate width at t = T/4, widens during the middle portion of the cycle, and finally 

narrows at t = ¾ T.  As in the experimental case, the maximum velocity increases steadily. 

 

 

4.3.2.   Quantitative Accuracy of the Driven Model Simulations 

The predicted and measured jet widths were not consistently in agreement as 

shown in Table 4.1.  The jet width was defined as the width of the jet at the point where 

fluid velocity was equal to 5% of the core velocity.  The percent difference values were 

calculated with reference to the experimental data.  The calculated and measured jet 

widths are relatively similar at t = T/4 and t = T/2 case.  The predicted jet width is much 

smaller than the measured jet width at t = ¾ T case. 

 

Table 4.1:  Jet width (mm). 
 Predicted Measured Difference 

t = T/4 0.57 0.49 16 % 
t = T/2 0.98 1.08 9 % 
t = ¾ T 0.47 0.79 - 41% 

 

The maximum jet velocity, however, was predicted reasonably well by the 

numerical model.  The error in maximum jet velocity was 16%, 20%, and 2% for  t = T/4, 

t = T/2, and t = ¾ T respectively.  A comparison between predicted and measured 

centerline velocities yields percentage errors of 160%, 10%, and 5% at t = T/4, t = T/2, 

and t = ¾ T respectively.  This wide error variation is apparent in Figure 4.6. The 

discrepancies between numerical and experimental values are significant at the beginning 

and end of the duty cycle. 
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The volume flow rates and orifice coefficents were computed, assuming a two-

dimensional velocity profile for both numerical and experimental data.  The differences 

between measured and predicted volume flow rates are given in Tables 4.2 and 4.3.  

Experimental data were used as reference values.  Very good agreement was obtained at t 

= T/2, but significant errors at t = T/4 and t = ¾ T indicate that the numerical model is not 

reliable.  It should be noted that the coarseness of the experimental data does introduce 

uncertainty to the accuracy of the volume flow rate calculations.  Greater spatial 

resolution of the experimental data would allow a more accurate comparison.  Orifice 

coefficient was calculated using Equation (4.1) in which C is the orifice coefficient, V  is 

the volumetric flow rate, A is the orifice area, ∆P is the pressure differential, and ρ is the 

fluid density. 

&

 

2
VC

PA
ρ

=
⋅Δ

&
                                   (4.1) 

 

Table 4.2:  Volume flow rate (L/s). 
 Predicted Measured Difference 

t = T/4 17 9.3 83 % 
t = T/2 34 35 - 4 % 
t = ¾ T 13 25 - 46 % 

 

Table 4.3:  Orifice coefficient. 
 Predicted Measured Difference 

t = T/4 0.97 0.53 83 % 
t = T/2 0.86 0.89 3 % 
t = ¾ T 1.05 1.96 - 46 % 

 

 

4.3.3. Sources of Error in the Numerical Model 

There are several factors which were believed to contribute to the discrepancies 

between measured and computed behavior of the driven model.  The most important 
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factor is likely the discrepancy between the actual and simulated boundary conditions.  

Subsequent experiments (Park et al., in review) have revealed that the pressure 2.5 cm 

upstream from the orifice varies by up to 30% in a periodic fashion.  However, the 

numerical model utilized a steady pressure boundary condition along the upstream 

boundary.  It is anticipated that the inclusion of a dynamic pressure boundary condition 

based on experimental data would greatly improve the accuracy of this model. 

The moving wall boundary condition is also suspected of introducing error into 

the simulation.  This boundary condition specifies the motion of the protrusion (see 

Figure 3.4).  The displacement time history was obtained by measuring the orifice width 

as represented in high speed images of the orifice taken during the experiment.  Some 

error is introduced by this measurement process, the limiting factor being the resolution 

of images produced by the camera.  The orifice size varied from 0 to 17 pixels, thus 

introducing a 5.9% discretization error.  More importantly, the identification of the 

orifice edge was difficult.  Increased image resolution would allow a more accurate 

definition of the orifice edge.  The errors introduced by poor image resolution may be 

seen in Figure 4.6 in which it appears that the orifice of the numerical model remains 

open for a significantly longer period than the experimental model. 

Flow asymmetry is clearly noted for the experimental case as shown in Figure 4.3.  

However, the computational domain assumed flow symmetry about the sagittal plane (see 

Figure 3.1).  A full simulation of the coronal plane would likely produce more accurate 

results.  

As shown in Figure 3.3, the orifice geometry consisted of a series of straight lines 

which connect at sharp corners.  Such corners produce extremely high gradients in the 

neighboring mesh, and require a very fine mesh to resolve.  Unless the mesh is 

sufficiently fine near sharp corners, numerical errors will be introduced in these regions.  

However, the orifice geometry used in the numerical model was representative of the 

geometry of the synthetic model.  A solution to this situation would be to connect straight 

lines with arcs of very small radii.  When used in conjunction with mesh refinement, this 

process may mitigate the effects of sharp corners.  Because of several more substantial 
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modeling discrepancies (primarily the static instead of dynamic pressure boundary 

condition), such modifications were not justifiable. 

Several of the modeling assumptions listed in section 3.2 may also have 

contributed to the discrepancies between experimental and numerical results.  The three-

dimensional physical model was represented in two dimensions.  This does not allow the 

effects of turbulence to be modeled.  Furthermore, no time-averaged turbulence model 

was used in the simulations.  A laminar fluid formulation was used.  Further work is 

needed in order to establish the contribution of time-averaged Reynolds stresses (for 

example a k-ε turbulence model) on the flow field. 

 

 

4.4  Conclusions 

Attempts were made to verify the accuracy of the flow model by comparisons 

with between a driven wall finite element model and experimental data.  This comparison, 

however, did not allow a meaningful verification of the numerical model accuracy since 

factors such as: static instead of dynamic boundary conditions, inaccurate orifice 

displacement time history, two-dimensional fluid representation, and symmetric flow 

representation were not fully matched between the numerical and experimental 

configurations. 

The maximum velocity attained over each cycle was predicted within 5% of the 

measured value.  The centerline velocity was predicted within 10% for at least 65% of 

each period.  The rate of velocity increase and decrease were accurately predicted.    

Qualitative characteristics of the physical model such as jet widening and narrowing were 

reproduced numerically.  It is anticipated that verification of fluid model accuracy could 

be obtained with appropriate modifications to the numerical model.  Specifically, wall 

motion should be measured more accurately and time varying pressure boundary 

conditions should be imposed.   
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5.  RESULTS OF SINGLE DEGREE OF FREEDOM MODEL SIMULATIONS 

 

 

 Results of fluid-structure interaction simulations which utilized the single degree 

of freedom model introduced in Section 3.2 are presented.  An analysis of typical results 

is given along with a discussion of the general characteristics of the model.  Conclusions 

concerning the ability of this model to exhibit self-oscillation are made and suggestions 

for future work are provided.  

 

 

5.1  Simulation Cases Investigated 

Two parameters of the single degree-of-freedom model of Section 3.2 were varied 

in this study: the applied pressure differential and the model’s included angle.  The 

included angle, ψ, is defined by Scherer et al. (2001b) as the angle between the medial 

surfaces of the vocal folds.  The diverging configuration is designated as a positive angle.  

A diagram of the included angle is shown in Figure 5.1. 
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ψ 

Figure 5.1:  The included angle, ψ. 
  

For each simulation, both the included angle and pressure differential were held 

constant.  The value of the included angle ranged from -10± to 20± in 5± increments.  The 

applied pressure differential ranged from 100 Pa to 3000 Pa.  Normal human phonation 

usually occurs at approximately 400 Pa (Flanagan, 1972). 

The results presented in this chapter were obtained for a pressure differential of 

1500 Pa, and are representative of the model behavior in the ranges specified above.  The 

behavior of the model was observed to have little dependence on included angle.  For this 

reason, results are only shown for included angle values of -10±, 0±, and 10±.   

 

 

5.2  Typical Model Response 

The equilibrium position of the mass in the absence of fluid flow was designated 

as x = 0.  At the time t = 0, the mass was subjected to fluid flow representative of that 

which would be obtained for an identical spring-mass system rigidly fixed at x = 0.  The 

displacement time histories for included angles of -10±, 0±, and 10± and a pressure 

differential of 1500 Pa are shown in Figure 5.2.     For all cases, fluid flow caused the 

model to be displaced in the negative x-direction from its initial location.  The mass then 

vibrated about a new equilibrium point located approximately 2 mm below the original 

position.  The vibration amplitude decayed exponentially during the time period from 0 to 

0.12 seconds.  After 0.12 seconds small oscillations were observed.  These oscillations 
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were on the order of 0.05 mm and were non-periodic.  These are discussed further in 

Section 5.4. 
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Figure 5.2:  Displacement time history for three cases:   ••• :  y = -10± ;   — :  y = 0±;   

 .y = 10±.  ΔPstatic = 1500 Pa :  ־־־
  

 

5.3  Power-Flow Calculations 

The transfer of energy between the fluid and structure was calculated using 

Newton’s Second Law: 
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 flmx cx kx F+ + =&& &  (4.2)  

Here, m is the mass, c is the damping factor, k is the spring stiffness, Ffl is the net fluid 

force, and x is the displacement.  The “dot” notation indicates differentiation with respect 

to time.  The three forces acting on the mass are Fs, the spring force, Fd, the damping 

force, and Ffl.  These are given as: 

 sF kx= −  (4.3) 

dF cx= − &       (4.4) 

flF mx cx kx= + +&& &      (4.5) 

 

 The rate of energy transfer relations are: 

fl flP F x= &                            (4.6) 

sp spP F x= &                                                              (4.7) 

damp dampP F x= &                                                        (4.8) 

where Pfl, Psp, and Pdamp are used to designate fluid, spring, damping power, respectively.  

The net work done by each force component is calculated by:  

0

t

fl flW P= dt∫                (4.9) 

0

t

sp spW P= dt∫                      (4.10)           

0

t

damp dampW P= ∫ dt

)dt

                   (4.11) 

where Wfl, Wsp, and Wdamp are used to designate fluid, spring, damping net work, 

respectively.   

   Finally, the total net work Wtot done by all forces was calculated using: 

 

 . (4.12) 
0

(
t

tot fl s dW P P P= + +∫
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5.4  Energy Transfer Analysis 

There are two sources of energy transfer in this system. The net energy transferred 

from the fluid to the mass is referred to as “Fluid Work”.  The term “Damping Work” is 

used to indicate the net energy dissipated by the damper element.  These quantities are 

shown as functions of time in Figures 5.3 and 5.4. 
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Figure 5.3:  Fluid work time history for three cases:  ••• :  y = -10± ;   — :  y = 0±;   ־־־  

: y = 10±.  ΔPstatic = 1500 Pa. 
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Figure 5.4:  Damping work time history for three cases:  ••• :  y = -10± ;   — :  y = 0±;   

 .y = 10±.  ΔPstatic = 1500 Pa :  ־־־
 

 
 As seen in figure 5.3, the total energy transferred from the fluid to the mass-spring 

system fluctuates initially, finally reaching a relatively stable value after t = 0.13 sec.  

The total energy which is dissipated by the damper is relatively constant after t = 0.13 

seconds as shown in Figure 5.4.  Note that for t > 0.13 sec., more total energy has been 

transferred to the mass than has been dissipated by the damper.  This energy was 

converted to potential energy stored in the spring as the mass was deflected downward to 

its new static equilibrium. 

 As opposed to the behavior observed above, self-oscillation of a damped system 

requires that energy be continually transferred from the fluid to the structure.  Thus, for a 

self-oscillating system, the net fluid work would exhibit a continually increasing trend 

rather than the static value shown for t > 0.13 seconds in Figure 5.3.  Likewise, the 

damping work would exhibit a continually decreasing trend as the energy received from 

the fluid is dissipated by the damper. 
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5.5  Non-periodic Oscillations 

Non-periodic motion of the model was observed for many simulation cases.  It 

was hypothesized that this motion was due to small numerical fluctuations in the fluid 

flow solution.  The y = 0±  case shown in Figure 5.5 was investigated to determine the 

source this motion.   
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Figure 5.5:  Displacement time history for the case ψ = 0±, ΔPstatic = 1500 Pa. 

 
 

Note that oscillations apparently reappear after t = 0.19 sec, possibly indicating 

that the system is capable of self-oscillation.  The amplitude of this motion was 

approximately 0.04 mm.  The net force exerted on the mass during the time interval 0.15 

to 0.25 seconds is shown in Figure 5.6.  The net force acting on the mass appears to be 

random rather than periodic.   
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Figure 5.6:  Net force acting on the mass during the time interval 0.15 < t < 0.25 s,           

y = 0±,  ΔPstatic = 1500 Pa 
 

 

  

 A phase-plane diagram is often used to investigate the stability of dynamic 

systems.  Figure 5.7 shows the phase-plane diagram for the 0±  included angle case for 

the time interval 0 to 0.25 seconds.  Displacement is plotted along the abscissa and 

velocity is plotted along the ordinate.  A phase plane diagram for the time interval 0.07 to 

0.25 seconds is shown as Figure 5.8. 
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Figure 5.7:  Phase plane diagram of the system response.  0 < t < 0.25 s,   y = 0±,           

ΔPstatic = 1500 Pa 
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Figure 5.8:  Phase plane diagram of the system response.  0.07 < t < 0.25 s,   y = 0±,  

ΔPstatic = 1500 Pa 
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As shown in Figures 5.6, and 5.8, neither the forces acting on the mass or the 

motion of the mass were periodic in nature.  Small, random fluctuations of the fluid 

pressure along the top surface of the mass were also observed.  It was therefore 

concluded that this behavior was an artifact of numerical errors rather than the product of 

genuine fluid-structure interactions.  One possible explanation for this may be that 

standard SI units were used.  This resulted in length scales on the order of millimeters 

and mass values on the order of grams.  Small, numerical instabilities would have a 

greater effect on a system of such small scales whereas the use of the centimeter-gram-

seconds system would have reduced these effects.  

 

 

5.6  Conclusions 

Self-oscillation of an M5 geometry, single degree-of-freedom spring-mass-

damper system subjected to viscous fluid flow was investigated for included angles 

ranging from -10± to 20± under static pressure loading conditions ranging from 100 to 

3000 Pa.  Self-oscillation was not observed for any cases in the stated ranges.   

 Previously reported single degree-of-freedom models have exhibited self-

oscillation.  The single mass model of Flanagan and Landgraf (1968) utilized a single 

spring-mass damper system subjected to ideal fluid flow and acoustic loading.  In 

contrast, the current model was subjected to viscous fluid flow in the absence of acoustic 

loading.  It may be hypothesized from this result that viscous fluid forces play a less 

important role in self-oscillation than compressibility effects.  A study by Thomson 

(2004) compared the relative magnitude of viscous and normal pressure forces in a 

numerical, self-oscillating continuum model of the human vocal folds. He concluded that 

the viscous shear forces were insignificant in comparison to the normal pressure forces.  

However, a Navier-Stokes fluid formulation will naturally predict surface pressures more 

accurately than Bernoulli’s equation.  Also, a Navier-Stokes model is capable of 

predicting flow structures such as vortex formation and separation point.   

 The two-mass model of Ishizaka and Flanagan (1972) has also been shown to 

exhibit self-oscillation in the absence of acoustic loading.  This behavior is attributed to 
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the converging/diverging nozzle configuration obtained as the two masses move out of 

phase with each other.  The fluid flow separation point moves back and forth in the 

inferior/superior direction as a result of this motion.  The pressure forces produced by the 

temporal asymmetry in the time history of the orifice coefficient cause self-oscillation of 

the two-mass model.  Although the current model relied upon a much more advanced 

viscous flow model, the presence of viscous forces, vortices, and other flow structures 

were not sufficient to induce self-oscillation.  One plausible explanation for the observed 

behavior is that structural complexity, in particular a time varying orifice shape, is a 

requirement for self oscillation.   
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6.  MODAL ANALYSIS RESULTS 

 

 

 In this chapter, the results of modal analyses of vocal fold models are presented.  

A verification study was performed to ensure that the results obtained via Ritz Method 

and finite element method modal analyses were identical.  A geometric sensitivity study 

was performed to determine the sensitivity of modal frequencies to changes in model 

length, width, and thickness.  The role of transverse displacements in modal behavior was 

investigated.   

 

6.1  Verification Study 

In order to verify the Ritz and ADINA methods, a comparison study was 

conducted.  The continuum model geometry and boundary conditions shown in Figure 

2.1 were used.  An isotropic, rather than transversely isotropic material was used because 

of a lack of information regarding the longitudinal Young’s modulus.  The isotropy ratio, 

n, indicates the level of anisotropy in a substance and is defined as the ratio of the 

transverse to longitudinal Young’s moduli: 

                n = Etrans/Elong . (6.1) 

To the author’s knowledge, neither Elong nor the isotropy ratio has been measured for 

human vocal fold tissue.  Berry & Titze (1996) assumed that the y-displacement function, 

ψ(x,y,z,t) was zero.  This effectively removes the longitudinal Young’s modulus from the 

stiffness matrix [C].  While this approach is possible when using the Ritz Method, the 

finite element program used in this study requires a numerical value for the longitudinal 

Young’s modulus.  The use of an isotropic material allowed a consistent comparison to 

be made.  The material was also assumed to be completely compressible in order to avoid 
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adverse effects caused by transverse stresses which are discussed in Section 6.4. The 

material properties used in the verification study are given in Table 6.1.   

 

Table 6.1:  Tissue properties for the verification study. 
CGM Units   SI Units

104 Pa
Density, ρ 1.03 g/cm3 1030 kg/m3

0 0Poisson's ratio, ν

Young's modulus, E 105 dyne/cm2  

 
 

Anterior/posterior constraints were applied to the finite element model to 

reproduce those implicitly used in the Ritz method.  The results are presented in Table 

6.2.   The agreement between computed natural frequencies suggests that the numerical 

procedures have been correctly implemented. 

 

Table 6.2:  Comparison of modal analysis results. 

Ritz ADINA
1 133 133 0.0%
2 151 151 0.0%
3 160 160 0.0%
4 227 227 0.0%
5 239 238 0.2%

Resonance Frequency (Hz)Mode Difference

 
 

 

6.1.1.  Comparisons with Previous Results 

 Modal analysis via the Ritz Method was performed using the continuum model of 

Figure 2.1 and the transversely isotropic material properties given in Table 3.2.  The first 

five mode shapes and modal frequencies are shown in Figure 6.1.  These mode shapes 

and frequencies were found to be identical to those presented by Berry and Titze (1996).   
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Mode 5:  220 Hz

 

Mode 4:  194 Hz 

 

Mode 3:  153 Hz  

 

Mode 2:  151 Hz 

 

Mode 1:  133 Hz 

Figure 6.1:  Modal frequencies and mode shapes of the first five modes obtained via the                         
Ritz Method.  Mode shapes are as viewed as coronal cross-sections. 

 

 

6.2  Geometric Sensitivity of the Continuum Model  

Using the above model and system parameters, a geometric sensitivity study was 

performed.  The thickness, depth, and length of the continuum model were varied 

independently.  The relative changes of the first five modal frequencies were calculated 

as a function of the relative changes in each dimension.  Relative changes in frequency 

are shown in Figures 6.2, 6.3, and 6.4.  Note that the scale is the same for each figure to 

facilitate direct comparisons.  For reference, modal frequency as a function of thickness, 

depth, and length are shown in Appendix B. 
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Figure 6.2:  Sensitivity of modal frequencies to changes in thickness, T.                                     
■ : Mode 1;  ◊ : Mode 2;  ▲ : Mode 3;  ○ : Mode 4;  + : Mode 5. 
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Figure 6.3:  Sensitivity of modal frequencies to changes in depth, D.                                      
■ : Mode 1;  ◊ : Mode 2;  ▲ : Mode 3;  ○ : Mode 4;  + : Mode 5. 
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Figure 6.4:  Sensitivity of modal frequencies to changes in length, L.                                         
■ : Mode 1;  ◊ : Mode 2;  ▲ : Mode 3;  ○ : Mode 4;  + : Mode 5. 

 

 The modal frequencies are least sensitive to changes in thickness, T.  As shown in 

Figure 6.2, the first, second, and third modal frequencies are nearly constant with changes 

in thickness, while the fourth and fifth modal frequencies decrease slightly as thickness is 

increased.   

The model is significantly more sensitive to changes in depth, D, than to changes 

in thickness as shown by a comparison between Figures 6.2 and 6.3.  The first modal 

frequency decreases gradually with increasing depth.  The second, third, and fourth 

modal frequencies decrease at a slightly higher rate.   

Finally, the model is most sensitive to changes in length, L as shown in Figure 

6.4.  The first modal frequency decreases very sharply with increased length while the 

second and third modal frequencies decrease at a slightly lower rate.  The fourth and fifth 

modal frequencies also decline sharply.  In fact, one may note that the least sensitive 

mode in Fig 6.4 declines more sharply than any of the modes in Figures 6.2 or 6.3. 

 Previous studies have reported that most of the vibratory energy is found within 

the first three modes of vibration (Alipour et al., 2001, Berry et al. 2001).  Hence, it has 
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been proposed that these modes are critical to the self-oscillation of the vocal folds.  The 

fourth and fifth modes may also be important in voice production since they occur near 

the first resonance of the vocal tract, thus contributing significantly to radiated sound. 

 

 

6.3 Range of Validity of Two-Dimensional Models 

 Figure 6.5 shows the first five modal frequencies as a function of length over a 

wide range of length values. 
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Figure 6.5:  Modal frequency versus model length. L.  The nominal length is designated 
by a dashed line.  ■ : Mode 1;  ◊ : Mode 2;  ▲ : Mode 3;  ○ : Mode 4;  x : Mode 5. 
 

 Three distinct regions can be identified in Figure 6.5.  The modal frequencies are 

highly dependent on length in the region from zero to four centimeters.  This is identified 

as the three-dimensional region.  The other two dimensions are depth and thickness. A 

transitional region of moderate dependence on length exists from about four to six 
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centimeters.  As the length of the continuum model exceeds six centimeters, the 

resonance frequencies become insensitive to changes in length, indicating two-

dimensional behavior.  In this region, the continuum behaves as an infinitely long rather 

than a finite parallelepiped.  Simulations of a two-dimensional model yield modal 

frequencies which are identical to those obtained for an extremely long (L = 109 cm) 

model.  The continuum model (which is representative of human vocal folds) has a 

nominal length of 1.2 cm, clearly within the three-dimensional region.  

 This three-dimensional behavior is a direct result of shear and normal stresses 

which act on the transverse (xz) plane.  Two-dimensional plane strain models do not 

account for these “out-of-plane” stresses.  As seen in Figure 6.5, these stresses have a 

dramatic influence of the vibratory behavior of this vocal fold model.  This suggests that 

the vocal folds themselves may be inherently three-dimensional in nature.  As a 

consequence, models which do not account for these effects may be in error.  

 

 

6.4  The Influence of Transverse Stresses 

A very long structure may be effectively modeled in two dimensions with very 

high accuracy in the regions not significantly affected by end effects.  One assumption 

which is used in modeling such structures is the plane strain assumption: strains (and 

therefore displacements) in the transverse direction are assumed to be zero.  Similarly, 

the transverse displacement function was assumed to be zero in the Ritz Method 

formulation of the continuum model.  However, plane strain was not explicitly assumed 

because the continuum model is based on a three-dimensional formulation of Hooke’s 

Law.  However, suppression of motion in the y-direction may cause significant errors.   

To investigate the influence of transverse displacement constraints, a comparison 

was made between cases in which the motion in the y-direction was constrained and 

unconstrained.  The finite element method was used to perform the modal analysis.  An 

isotropic material was used for the reasons already stated in Section 6.1.  The vocal fold 

tissue was assumed to be incompressible.  The material was defined using the material 

properties listed in Table 6.3. 
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Table 6.3:  Tissue properties for the isotropic case. 
CGM Units   SI Units

104 Pa
Density, ρ 1.03 g/cm3 1030 kg/m3

0.4999 0.4999

Young's modulus, E 105 dyne/cm2  

Poisson's ratio, ν  
   

The rectangular domain was meshed using 840 quadratic (27 node) three-

dimensional solid finite elements for a total of 7875 nodal points.  Repeated calculations 

using varying mesh densities confirmed that this configuration represents a mesh-

converged solution.  The model geometry and boundary conditions were consistent with 

previous cases. 

For constrained cases, all finite element nodes (except those on the fixed 

boundaries) were constrained to move within the XZ plane.  For unconstrained cases, all 

interior and free surface nodes were allowed to move in all three directions. 

 The displacement fields were obtained along a plane located 0.3 cm from the front 

face at one-quarter the total length of the model, as illustrated in Figure 6.6.   

 

 

z  

y  

x  
y = 0.3 cm 

Figure 6.6:  Sketch of the first mode shape and the plane y = 0.3 cm. 
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The displacement fields for constrained and unconstrained cases at the plane         

y = 0.3 cm are shown in Figure 6.7.  Although the maximum displacements computed are 

not identical, there is very little quantitative or qualitative difference between the two 

displacement fields. 

 

 

0.05 

0 

0.1 

Displacement, cm
▲ (a) (b) Displacement, cm

0.1 

0.05 

0 

▲ 
● ● 

Figure 6.7:  Displacement field results along y = 0.3 cm:                                                  
(a) constrained; Maximum: ▲0.097 cm; Minimum: ● 0.0 cm                                              

(b) unconstrained; Maximum: ▲0.104 cm; Minimum: ● 0.0 cm 
 

The stresses normal to the y = 0.3 cm plane, σyy, are shown in Figure 6.8.  The 

effects of constraint forces required to prevent motion in the y-direction are clearly 

visible in Figure 6.8 (a).  The difference between the constrained and unconstrained cases 

are qualitatively and quantitatively different.  In the unconstrained case, maximum and 

minimum stress levels are obtained at the boundaries (as would be expected) and are on 

the order of 7 kPa.  In contrast, the maximum and minimum stress levels in the 

constrained case occur at the medial surface.  The maximum stress levels in the 

constrained case are on the order of 80 kPa – one order of magnitude greater than in the 

unconstrained case. 
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Figure 6.8:  σyy stress fields at the plane y = 0.3 cm:                                                      

(a) constrained case; Maximum: ▲75.8 kPa; Minimum: ● -75.8 kPa                                      
(b) unconstrained case; Maximum: ▲6.78 kPa; Minimum: ● -6.78 kPa 

 

 The modal frequencies also differ between the constrained and unconstrained 

cases.  Table 6.4 lists the first six mode shapes and modal frequencies for both cases.  

Arrows are used to identify similar mode shapes which occur in both cases.  For example, 

mode 2 in the unconstrained case has the same basic shape as mode 3 in the constrained 

case.   
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Table 6.4:  Frequencies and mode shapes for constrained and unconstrained cases. 

(Hz) Frequency (Hz) % Difference

Mode 1 81 73 11%

Mode 2 117 113 6%

Mode 3 120 115 2%

Mode 4 153 131 16%

Mode 5 175 144 23%

Mode 6 177 150 ---

Mode Shape Mode Shape
Constrained Unconstrained

 
 

        For a given mode shape, the presence of constraints resulted in consistently 

greater modal frequencies than those obtained in the absence of constraints.  This is a 

consequence of the constraint forces which artificially stiffen the structure.  The relative 

differences between constrained and unconstrained modal frequencies are listed in Table 

6.4, with the unconstrained case as the reference value.  The relative difference varies 

between 2% and 23%.  The second and third modal frequencies are relatively similar;  the 

fourth and fifth modes exhibit greater discrepancies.  Unfortunately there seems to be no 

consistent trend in the differences between constrained and unconstrained modes.    

  

 

6.5  Conclusions 

The resonance frequencies of the vocal folds model were found to be most 

sensitive to changes in length.  The results provided in Figure 6.5 imply that a two-

dimensional model constructed using standard tissue parameters will exhibit modal 

frequencies much lower than expected.  This phenomenon has been reported by Thomson 
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(2004) and may be explained by the fact that two-dimensional planar strain models 

neglect to correctly model the out of plane shear and normal stresses.  These observations 

suggest that the vibration of the human vocal folds may also be influenced by similar out 

of plane stresses.  More detailed analytic models may be used in conjunction with 

experiments to test this hypothesis.  The relative contribution of shear versus normal out 

of plane stresses may also be of interest in order to simplify future models. 

The suppression of lateral motion in an isotropic continuum model of the vocal 

folds introduces errors in the calculation of mode shapes and modal frequencies.  The 

modal frequencies obtained in a constrained case are always greater than those obtained 

in the unconstrained case.  In general, the discrepancies between modal frequencies in 

each case are greater for increasingly higher mode numbers.  These observations suggest 

that hybrid models may be biased due to the artificial stiffening caused by 

anterior/posterior constraints.  While this effect is noticeable in linear, small amplitude 

analysis, it may be more pronounced during the large amplitude oscillations encountered 

in phonation.  Unfortunately, the magnitude of such errors cannot be predicted other than 

by the construction and analysis of an unconstrained model of identical characteristics.   

 The results of Section 6.4 were obtained using an isotropic rather than a 

transversely isotropic material.  Because vocal fold muscle fibers are oriented in the 

longitudinal direction, the vocal fold tissue is most accurately modeled as a transversely 

isotropic material.  However, there is no available data for many tissue properties in the 

transverse plane.  Many existing vocal fold models (Berry and Titze, 1996, Alipour et al., 

2001) assume that no displacement occurs in the longitudinal direction.  It has been 

shown in this study that this constraint would artificially stiffen an isotropic structure.  

The effect of this assumption on transversely isotropic cases has not yet been 

investigated.  It is suggested that a parametric study be conducted in which the isotropy 

ratio, n, is varied to account for the unknown tissue properties. 

 Finally, because the above models differ from the human vocal folds in many 

aspects (e.g. geometry, material properties, and boundary conditions), the results 

presented above are not directly applicable to the human vocal folds.  However, the 
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results suggest that three-dimensional stresses may have a significant influence on the 

vibratory characteristics of the human vocal folds.  
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7.  CONCLUSIONS 

 

  

7.1 Summary 

 Numerical simulations of the synthetic model were presented in Chapter 4.  The 

numerical model predicted fluid behavior which was observed to exhibit qualitative 

similarities to the synthetic model.  The maximum velocity magnitude for each cycle was 

predicted reliably, but significant errors were observed during opening and closing 

portions of the oscillation cycle.  Several likely sources of error were identified.  Primary 

sources of error included the lack of dynamic boundary conditions, inaccurate orifice 

displacement time history, and the symmetric flow assumption.  

The behavior of a lumped mass model subjected to viscous fluid flow was 

presented in Chapter 5.  This model was not observed to exhibit self oscillation.  These 

results suggest that the modeling of viscous forces and flow structures such as separation 

point and vortex formation are not sufficient to induce self-oscillation of a rigid single 

mass model. 

Modal analysis results were presented in Chapter 6.  The modal properties of the 

nominal continuum model were observed to be affected by out of plane stresses.  This 

observation explains some of the difficulties reported by Thomson (2004) in modeling 

the vocal fold structure in two dimensions.  Two dimensional models (and some hybrid 

models) are not capable of modeling these out of plane stresses and will thus be unable to 

simulate the effects of out of plane stresses. 
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7.2  Recommendations for Future Research 

Numerical simulations of the driven physical model may be useful in determining 

the contribution of viscous forces, compressibility and turbulence in fluid flows 

representative of human phonation.  Subsequent simulations should include dynamic 

boundary conditions and rounded corners.  An accurate determination of the orifice 

motion is also critical.  Significantly more accurate results are expected as these error 

sources are appropriately addressed. Following full verification of the finite element code 

accuracy, similar simulations may also be useful in quantitatively evaluating the 

contribution of unsteady terms in the Navier-Stokes equations.  Such a study would 

provide an numerical verification of the quasi-steady assumption.  A more complete 

understanding of these various fluid effects will aid in the creation of more accurate 

reduced order models of human phonation. 

The single mass model of Chapter 5 was constructed specifically to investigate 

the influence of viscous flow on self-oscillation.  As a consequence, several mechanisms 

believed to contribute to the self-oscillation were not examined in this study.  These 

include acoustic loading, and structural complexity.  Instead of attempting to design a 

simple self-oscillating model, a suggested approach would be to instead examine a model 

which is capable of self-oscillation.  Various fluid and structural aspects could then be 

modified independently to observe which mechanisms (such as those mentioned above) 

are most essential to self-oscillation.  Numerical models may be used to isolate variables 

in ways which cannot be duplicated in the laboratory. 

The continuum model utilized in Chapter 6 represents an idealized model of the 

human vocal folds.  New geometric data should be utilized to create a model more 

geometrically similar to the human vocal folds.  Layers should also be added to this 

model as more tissue parameters become available.  Until the time that all tissue 

parameters are known, parametric studies of the role of various tissue properties may be 

used.  These may become indispensable because of the natural variation of tissue 

parameters in actual vocal fold tissues.  Numerical studies should also be referenced to 

experimental studies in order to determine if and how the human vocal folds are 

affected by out of plane stresses.  Finally, all modal analyses performed to date have 
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assumed that the vocal folds to be in an initially stress-free configuration.  In reality, 

posturing of the vocal folds occurs prior to phonation.  This introduces unknown 

stresses to the vocal fold structure.  The presence of these stresses may change the 

qualitative as well as quantitative behavior of the vocal folds.  The effects of posturing 

on modal properties should be examined in future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 78

 

 

 
  

 

 

 

 

 

 

 

 

REFERENCES 



 73

 
 
 
 
 

LIST OF REFERENCES 
 

ADINA Theory and Modeling Guide Volume I, 2004, ADINA System Online 
Manuals, ADINA R&D Inc., Watertown, MA 02472, pp. 516. 

ADINA Theory and Modeling Guide Volume III, 2004, ADINA System Online 
Manuals, ADINA R&D Inc., Watertown, MA 02472, pp. 115-118.  

Alipour F., Berry D., and Titze I.R., 2000, “A finite-element model of vocal-fold 
vibration,” J. Acoust. Soc. Am. 108, pp. 3003–3012. 

Alipour-Haghighi, F., and Titze, I. R., 1991, ‘‘Elastic models of vocal fold 
tissues,’’ J. Acoust. Soc. Am. 90, pp.1326–1331. 

Baer T., 1981, “Investigation of the phonatory mechanism,” Am. Speech and 
Hearing Assoc. Reports 11 pp. 38–46. 

Bathe, J.K., 1996, Finite Element Procedures, Upper Saddle River, New Jersey: 
Prentice Hall. 

Berry, D.A., 2001, “Mechanisms of modal and nonmodal phonation,”  J. 
Phonetics 29  pp. 431-450. 

Berry, D.A., Montequin D.W., and Tayama, N.,  2001, “High-speed digital 
imaging of the medial surface of the vocal folds,”  J. Acoust. Soc. Am. 110, pp. 
2539–2547. 

Berry, D.A., and Titze, I.R., 1996, “Normal modes in a continuum model of vocal 
fold tissues,” J. Acoust. Soc. Am. 100, pp. 3345–3354. 

Berry, D.A., Clark, M.J.O., Montequin, D.W., and Titze, I.R., 2001 
"Characterization of the medial surface of the vocal folds", Ann. Otol. Rhinol. 
Laryngol.  110 (5),  pp. 470-477. 

Chan, R.W., and Titze, I.R., 1999, "Viscoelastic shear properties of the human 
vocal fold mucosa: measurement methodolgy and empirical results", J. Acoust. 
Soc. Am. 106, pp.2008-2021. 

Cook, R.D., Malkus, D.S., Plesha, M.E., and Witt, R.J., 2001, Concepts and 
Applications of Finite Element Analysis, 4th Edition, Wiley and Sons Inc. 

de Vries, M.P., Schutte, H.K., and Verkerke, G.J., 1999,  “Determination of 
parameters for lumped parameter models of the vocal folds using a finite-element 
method approach,” J. Acoust. Soc. Am. 106, pp. 3620-3628. 

Flanagan, J.L., Landgraf, L.L., 1968, "Self-oscillating source for vocal tract 
synthesizers", IEEE Trans. On Audio and Electroacoustics, AU-16, No. 1, pp. 57-
64. 



 74

Flanagan, J. L., 1972,  Speech Analysis, Synthesis, and Perception, 2nd edition, 
Springer-Verlag, New York. 

Fox, R.W., MacDonald, A.T., and Pritchard, P.J., 2003, Introduction to Fluids 
Mechanics, 6th Ed., John Wiley & Sons Inc. 

Grey, H., 1918, Anatomy of the Human Body, XI. Splanchnology, 1a. Figure 954.  
Available at http://www.bartleby.com/107/236.html (as of November 2005). 

Gunter, H., 2003, “A mechanical model of vocal-fold collision with high spatial 
and temporal resolution,” J. Acoust. Soc. Am. 113, pp. 994-1000. 

Hirano, M., and Bless, D.M., 1993, Videostroboscopic Examination of the 
Larynx, San Diego, Singular Publishing Group. 

Hirano, M., and Sato, K., 1993, Histological Color Atlas of the Human Larynx, 
San Diego, Calif., Singular Pub. Group. 

Horacek. J., and Svec, J.G.,  2002a  “Aeroelastic model of vocal-fold-shaped 
vibrating element for studying the phonation threshold,”  J. of Fluids and 
Structures 16, pp. 931-955. 

Horacek J., and Svec, J.G.,  2002b, "Instability boundaries of a vocal fold 
modelled as a flexibly supported rigid body vibrating in a channel conveying 
fluid", Proceedings of IMECE 2002, pp. 1-12. 

Hunter, E.J., Titze, I.R., and Alipour, F.,  2004 “A three-dimensional model of 
vocal fold abduction/adduction,”  J. Acoust. Soc. Am. 115, pp. 1747-1759. 

Titze, I.R., Story, B.H., 2002, “Rules for controlling low-dimensional vocal fold 
models with muscle activation,”  J. Acoust. Soc. Am. 112 (3), pp. 1064–1076.  

Ishizaka, K., and Flanagan, J.L., 1972 “Synthesis of voiced sounds from a two-
mass model of the vocal cords,” Bell Syst. Tech. J. 51 pp. 1233–1267. 

Jiang, J.J., Shah, A.G., Hess, M.M., Verdolini, K., Banzali, F.M., and Hanson, 
D.G., 2001,  “Vocal fold impact stress analysis,” Journal of Voice 15 (1) pp. 4-14. 

Jiang, J.J., and Titze, I.R., 1993,  “A methodological study of hemilaryngeal 
phonation,” Larygoscope 103, pp. 872-882. 

Jiang, J.J., and Titze, I.R., 1994, “Measurement of vocal fold intraglottal pressure 
and impact stress,” Journal of Voice 8, pp, 132-144. 

Kob, M., 2002, Physical Modeling of the Singing Voice, Ph.D. Dissertation, 
University of Technology Aachen. Logos-Verlag, Berlin. 

LaMar, M.D., Qi, Y., and Xin, J., 2003, “Modeling vocal fold motion with a 
hydrodynamic semicontinuum model,”  J. Acoust. Soc. Am. 114 pp. 455-464. 

Larsen, C.R., 2002, “How the Larynx (Voice Box) Works,” Center for Voice at 
Northwestern Website available at www.voice.northwestern.edu/howworks.html, 
(as of November, 2005).  

http://www.bartleby.com/107/236.html


 75

Leissa, A., and Zhang, Z.D., 1983, 1983, “On the three-dimensional vibrations of 
the cantilevered rectangular parallelepiped,”  J. Acoust. Soc. Am. 73 pp.  2013–
2021. 

Lucero, J.C.,  1999, “A theoretical study of the hysteresis phenomenon at vocal 
fold oscillation onset-offset,” J. Acoust. Soc. Am. 105 (1), pp 423-31. 

Lucero, J.C., 2004, "Dynamics of Vocal Fold Oscillation", Invited Plenary Talk 
XXVII Nat. Cong. App. & Comp. Math. 

Meirovitch, L., 2000, Principles and Techniques of Vibrations, Prentice-Hall, 
Upper Saddle River, New Jersey.. 

Min, Y.B., Titze, I.R., and Alipour-Haghighi, F., 1995, "Stress-strain response of 
the human vocal ligament", Ann. Otol. Rhinol. Laryngol. 104, pp. 563-569. 

National Aeronautics Space Administration, 1995, Man-Systems Integration 
Standards Revision B, Vol. 1, Section 3.1.2. 

Neubauer, J.,  Mergell, P., Eysholdt, U., and Herzel, H., 2001, “Spatio-temporal 
analysis of irregular vocal fold oscillations: Biphonation due to desynchronization 
of spatial modes,” J. Acoust. Soc. Am. 110, pp. 3179-3192. 

Park, J.B., and Mongeau, L., in review, “Instantaneous orifice discharge 
coefficient measurements of a physical, driven model of the human larynx,” 
J. Acoust. Soc. Am. 

Pillai, R.S., Chandra, T., Miller, I.F., Lloyd-Still, J., and Yeates, D.B., 1992, 
"Work of adhesion of respiratory tract mucus", J. Appl. Physiol. 72 (4), 1604-
1610. 

Ritz, W., 1908, “U ber eine neue Methode zuer Lo¨sung gewisser Variations 
problemeder mathematischen Physik,” Z. Reine Angew. Math. 135, pp. 1–61. 

Rosa, M.O., Pereira,  J.C., Grellet, M., and Alwan, A., 2003, "A contribution to 
simulating a three-dimensional larynx model using the finite element method," J. 
Acoust. Soc. Am. 114 (5), pp. 2893-2905. 

Roy, N., Merrill, R., Thibeault, S.,Gray, S., and Smith, E., 2004, “Voice disorders 
in teachers and the general population: Effects on work performance, attendance, 
and future career choices,” J. of Speech, Lang. and Hear. Res. 47(3), 542—551. 

Saito, S., Fukuda, H., and Kitahira, S., 1985 “Pellet tracking in the vocal fold 
while phonating: experimental study using canine larynges with muscle activity,”  
In Vocal Fold Physiology, Denver: Denver Center for the Performing Arts. 

Scherer, R., and Titze, I.R. 1983, “Pressure-flow relationships in a model of the 
laryngeal airway with a diverging glottis,” In Vocal Fold Physiology: 
Contemporary research and clinical issues, College-Hill Press, San Diego CA.,  
pp. 179-193.  

Scherer, R.C., De Witt, K.J., and Kucinschi, B.R., 2001 a, "The effect of exit radii 
on intraglottal pressure distributions in the convergent glottis.", J. Acoust. Soc. 
Am.   110 (5), pp. 2267-2270. 



 76

Scherer, R.C., Shinwari, D., De Witt, K.J., Zhang, C., Kucinschi, B.R., and Afjeh, 
A.A., 2001 b, "Intraglottal pressure profiles for a symmetric and oblique glottis 
with a divergence angle of 10 degrees", J. Acoust. Soc. Am. 109 (4), pp. 1616-
1630. 

Scherer, R.C., Shinwari, D., De Witt, K.J., Zhang, C., Kucinschi, B.R., and Afjeh, 
A.A., 2002, "Intraglottal pressure distributions for a symmetric and oblique glottis 
with a uniform duct", J. Acoust. Soc. Am.,  112 (4), pp. 1253-1261. 

Selbie, W.S., Gewalt, S.L., and Ludlow, C.L., 2002, "Developing an anatomical 
model of the human lanryngeal cartilages from magnetic resonace imaging", J. 
Acoust. Soc. Am. 112, (3), pp. 1077-1090. 

Sidlof, P., Svec, J.G., Horacek, J., Vesely, J., Klepacek, I., and Havalik, R., 2004, 
"Determination of vocal fold geometry from excised laryges: Methodology and 
preliminary results", 2004 Int. Conf. on Voice Physiology and Biomechanics. 

Smith, E., Gray S.D., Dove, H., Kerchner, L., Heran, H., , 1998, “Frequency and 
effect of teachers voice problems,” Journal of Voice 11, pp. 81-87. 

Svec, J.G., Horácek, J., Sram, F., and Vesely, J., 2000, “Resonance properties of 
the vocal folds: In vivo laryngoscopic investigation of the externally excited 
laryngeal vibrations,” J. Acoust. Soc. Am. 108, pp. 1397-1407. 

Svec, J.G., 2002, “Research journey: chest-falsetto discontinuity and 
videokymography,” First International Conference on the Physiology and 
Acoustics of Singing (PAS1) October 3-5, 2002, Groningen, the Netherlands 

Tayama, N., Chan, R.W., Kaga, K., and Titze, I.R., 2002, “Functional definitions 
of vocal fold geometry for laryngeal biomechanical modeling,” Ann Otol Rhinol 
Laryngol. 111(1), pp.83-92. 

Thomson, S.L.,  2004, Fluid-Structure Interactions Within the Human Larynx 
Ph.D. Dissertation, Purdue University. 

Thomson, S.L., Mongeau, L., and Frankel, S.H., 2005, "Aerodynamic transfer of 
energy to the vocal folds", J. Acoust. Soc. Am., 118 (3) pp. 1689-1700 

Titze, I.R., and Strong, W.J., 1975, “Normal modes in vocal cord tissues,” J. 
Acoust. Soc. Am. 57, pp. 736–744. 

Titze, I.R., and Talkin D., 1979, “A theoretical study of the effects of various 
laryngeal  configurations on the acoustics of phonation,”  J. Acoust. Soc. Am. 66, 
pp. 60-74. 

Titze, I.R., 1988, “The physics of small-amplitude oscillation of the vocal folds,” 
J. Acoust.  Soc. Am. 83, pp. 1536-1552. 

Titze, I.R. 2002, “Regulating glottal airflow in phonation: Application of the 
maximum power transfer theorem to a low dimensional phonation model,” J. 
Acoust. Soc. Am. 111, (1), pp. 367-376. 

Titze, I.R., 1976, "On the mechanics of vocal-fold vibration", J. Acoust. Soc. Am. 
60 (6), pp.1366-1380. 



 77

Titze, I.R., and Hunter, E.J., 2004, "Normal vibration frequencies of the vocal 
ligament", J. Acoust. Soc. Am. 115 (5), pp.2264-2269. 

Trevisan, M.A., Eguia, M.C., and Mindlin, G.B., 2001, "Nonlinear aspects of 
analysis and synthesis of speech time series data", Phy. Rev. E, 63,  pp. 1-6. 

Verdolini, K., and Ramig, L.O., 2001, "Occupational risks for voice problems,” 
Journal of Logopedics, Phoniatrics, Vocology. 26 (1) pp.37-46. 

Washizu, K., 1968, Variational Methods in Elasticity and Plasticity, New York: 
Pergamon; pp. 43–44. 

Zhang, K., Chan, R.W., and Siegmund, T., (in review), "Constitutive 
characterization of tensile deformation of the human vocal fold cover with 
applications to fundamental frequency regulation". 

Zhang, Z., Mongeau, L., and Frankel, S.H., 2002, "Experimental verification of 
the quasi-steady assumption approximation for aerodynamic sound generation by 
pulsating jets in tubes", J. Acoust. Soc. Am, 112, (4), pp. 1652-1663. 

Zhao, W., Zhang, C., Frankel, S.H., and Mongeau, L., 2002, “Computational 
aeroacoustics of phonation, part I: numerical methods, acoustic analogy 
validation, and effects of glottal geometry,” J. Acoust. Soc. Am. 112, (5), pp. 
2134-2146. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83  

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 



78 

 

 

 

Appendix A:  Description of Driven Model Experimental Apparatus 

 

 

A.1  Synthetic Model of the Vocal Folds 

 A physical model of the human vocal folds was constructed by Park et al., (2005). 

A silicone rubber compound was used to create a model geometrically similar to the 

human vocal folds.  This model was subjected to forced oscillations within a rectangular 

channel in order to simulate the motion of the human vocal folds.  A pressurized air 

source provided airflow across the driven model.  The model was photographed using a 

high-speed camera.  Detailed flow information was obtained using a hot-wire probe.    

  

 

A 1.1 Experimental Apparatus 

The experimental apparatus consisted of a rectangular channel which was 

connected to a pressurized air source.  The air passed from the source, through the 

channel, and finally passed by the oscillating vocal folds which were located at the far 

end of the channel.  The channel dimensions were 2.5cm (width) by 3.5 cm (height) by 

21cm (length).  Static pressure measurements were taken 2.5 cm upstream from the 

physical model and 2.5 cm downstream from the orifice.  Acoustic pressure 

measurements were not recorded.   

  Two vibration oscillators were used to drive the motion of the synthetic model.  

These operated at a frequency of 100 Hz.  The motion of the model was captured with a 

high speed camera capable of taking 3000 images per second.  The velocity field 1 mm 

downstream from the orifice was measured using a small hot wire probe.   Figure A.1 

provides a schematic diagram of the experimental arrangement.  A photograph of the 

experiment is shown in Figure A.2. 
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Figure A.1:  Schematic diagram of experimental apparatus (from Park et al., in review). 
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Figure A.2: Photograph of the experimental apparatus. 

 

Images of the physical model taken with the high speed camera at various time 

steps spanning one period of motion are shown below in Figure A.3.  In this figure, 

symmetry planes are shown in as dashed lines.   
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Figure A.3: Images of the driven model over one cycle of oscillation. 
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Appendix B:  Effects of Dimensional Changes on Modal Frequencies 
 

The relative changes of the first five modal frequencies were calculated as a 

function of the relative changes in each dimension in Section 6.2  The absolute changes 

in frequency corresponding to Figures 6.2, 6.3, and 6.4 are shown in Figures B.1, B.2, 

and B.3, respectively.  Note that the scale is the same for each figure to facilitate direct 

comparisons. 
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Figure B.1:  Modal frequencies as a function of thickness, T.                                               

■ : Mode 1;  ◊ : Mode 2;  ▲ : Mode 3;  ○ : Mode 4;  + : Mode 5. 
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Figure B.2:  Modal frequencies as a function of depth, D.                                                  

■ : Mode 1;  ◊ : Mode 2;  ▲ : Mode 3;  ○ : Mode 4;  + : Mode 5. 
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Figure B.3:  Modal frequencies as a function of length, L.                                                 

■ : Mode 1;  ◊ : Mode 2;  ▲ : Mode 3;  ○ : Mode 4;  + : Mode 5. 
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